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Abstract

Despite intensified international trade and production fragmentation, local

weather shocks have only been shown to affect local economic activity. This

paper introduces input-output sectoral interlinkages as a transmission mecha-

nism of weather shocks in a production network model. Using global sectoral

production data from 1975 to 2020, I document that agriculture is the most

adversely affected sector by local hot daily temperature shocks. Accounting

for network propagation, downstream sectors, non-responsive to local weather,

incur substantial and persistent losses due to the ripple effect from agriculture.

Counterfactual scenarios reveal a threefold underestimation of aggregate costs

induced by temperature increases accounting for shocks across trade partners.

The analysis also highlights sectoral centrality in the production network as a

determinant of global losses.
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1 Introduction

There is a large and urgent demand for data-driven estimates of climate impacts to

properly account for the benefits of additional climate mitigation efforts (Newell et al.,

2021). Despite recent methodological advancements to estimate the relationship be-

tween climatic conditions and economic outcomes (Hsiang, 2016; Auffhammer, 2018),

previous empirical studies investigate the response of local aggregate measures of eco-

nomic activity to isolated local weather shocks (see Kolstad and Moore (2020) for a

review). In an increasingly interconnected world with international trade and supply-

chain relations in production networks, the transmission of non-local weather shocks

emerges as a potential mechanism for an accurate quantification of climate damages.

On the one hand, openness to international trade and production fragmentation can

help increase diversification in the supply chain and lower volatility (Caselli et al.,

2020; Nath, 2020), on the other hand, however, they can increase exposure to shocks

with effects rippling through the supply chain (di Giovanni and Levchenko, 2009).

This paper examines how weather shocks heterogeneously affect sectoral economic

activity and traces their propagation in international production networks over time

by using cross-country global sector-level data combined with high-resolution weather

data and input-output sectoral interlinkages. To show the importance of weather

shocks hitting other sectors and affecting sectoral production through sectoral inter-

linkages, I formalize a model of production networks (Carvalho and Tahbaz-Salehi,

2019; Acemoglu et al., 2016), which provides intuition behind the potential bias of

estimates based on local response function estimations to local weather shocks. Ne-

glecting the interconnections among sectors while weather shocks are spatially cor-

related leads to contraventions of common identifying assumptions, by violating the

stable unit treatment value assumption. Consequently, partial equilibrium estimates

of the relationship between weather and economic outcomes become biased. In this

paper, I highlight a new mechanism in the climate impact literature adding real-world

features omitted in previous reduced-form attempts to quantify the economic cost of

climate change.
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The empirical analysis is conducted in two steps. First, I estimate the sector-

specific response in the growth rate of per capita gross value added to weather shocks

in a pooled multi-country sample of sectoral production across 183 countries between

1975 and 2020 for six sectors.1 The effect of weather shocks on production is identified

using plausibly exogenous year-to-year variation in the distribution of daily temper-

ature and precipitation (Deschênes and Greenstone, 2011; Carleton et al., 2022). In

line with previous findings (Dell et al., 2012; Acevedo et al., 2020), I document that

agriculture is the most harmed sector. Using a measure of heat shocks, defined as

an additional day above the 95th percentile of the country-specific daily temperature

distribution, reduce the agricultural growth rate by 16% of its sample mean.

Second, I analyze how weather shocks hitting customer/supplier sectors domes-

tically and abroad propagate through input-output interlinkages and affect sectoral

economic production. I construct downstream and upstream, domestic and foreign

network shocks using the global input-output tables from EORA26 (Kanemoto et al.,

2011) combined with a vector of weather shocks. In the second part of the paper, I

investigate whether sectors are affected by shocks on trade partners due to their prop-

agation via supply chain interlinkages. I document that domestic and foreign heat

shocks, respectively measured as weather shocks weighted by the relative importance

of sectoral interlinkages within the same country and abroad, have a strong negative

effect on several sectors’ output, notably construction; other activities; transport,

storage, and communication; wholesale, retail trade, restaurants and hotels. The

magnitude of the indirect effect is substantial and comparable to the direct effect

of weather shocks on agricultural production. I further examine the mechanisms of

the propagation effect and detect heat shocks in the agricultural sector as the main

channel of downstream propagation to customer sectors. Results are stronger when

accounting for the full propagation using the Leontief inverse matrix. Using local

projections (Jordà, 2005), I find that the effect of network shocks is persistent over

time, dampening sectoral growth up to five years after the shock.

1Agriculture, hunting, forestry, and fishing; Mining, manufacturing and utilities; Construction;
Wholesale, retail trade, restaurants, and hotels; Transport, storage, and communication; Other
activities (including government and financial sector).
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Finally, I use the estimated parameters from the reduced-form specification as

the basis of two counterfactual analyses. First, I quantify the contribution of input-

output interlinkages between sectors to the average annual output loss due to recent

warming from 2000 onwards. I consider a counterfactual world with no input-output

linkages and with linearly trended daily temperatures from their baseline climate

in 1970-2000. Accounting for network shocks, recent warming is responsible for an

average annual output loss of 0.33%, compared to a 0.1% average loss when omitting

spillovers. Second, I obtain the average annual global cost for an additional hot day in

a specific country. Average annual global costs are at their highest when heat shocks

occur in countries with many supply chain interlinkages in the production networks,

such as China, Brazil, France, India, and the United States.

Altogether, these findings provide evidence of the role of input-output sectoral

interlinkages as an important mechanism for the propagation and amplification of

weather shocks. They also highlight a substantial underestimation when omitting

sectoral linkages and underline the importance of this channel as a component of the

total economic impact of climate change.2

This paper contributes to the climate economics literature by providing jointly

estimated sector-specific response functions to weather shocks across the world from

1975 through 2020. A rapidly growing number of studies analyze the impact of

temperature fluctuations on national or regional GDP per capita around the world

(Akyapi et al., 2022; Burke et al., 2015; Kalkuhl and Wenz, 2020; Dell et al., 2012;

Kahn et al., 2021; Burke and Tanutama, 2019; Kotz et al., 2021). Global studies at the

sectoral level have been limited to a coarse tripartition of the economy into agriculture,

manufacturing, and services, finding that industrial and service output are mostly

sheltered (Acevedo et al., 2020). At a finer level of sector disaggregation, previous

work has focused on the impact of tropical cyclones in the Caribbean and Central

America area (Hsiang, 2010), worldwide (Kunze, 2021), and of seasonal temperature

variations in Europe (Linsenmeier, 2024).

2For example, Kahn et al. (2021) show that an average increase in temperature by 0.01ºC is
associated with a 0.02% decrease in the annual growth rate of global economic output (see Tol
(2022) for a complete meta-analysis of the economic impact of climate change).
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This paper introduces a new mechanism in the climate impact literature. Previous

studies examine economic losses as a function of local weather shocks, assuming that

production depends only on local weather and holding conditions in other locations

fixed. Besides spatial correlation as a channel for the global nature of climate change

(Dingel et al., 2021), shocks can also propagate through production networks across

geographically distant countries (Wenz andWillner, 2022). The existing literature has

investigated how input-output interlinkages amplify and propagate economic shocks

across US firms (Giroud and Mueller, 2019; Cravino and Levchenko, 2017) or sectors

(Acemoglu et al., 2016), and across countries (Das et al., 2022). Recent empirical

studies examine the propagation of natural disasters in the US (Barrot and Sauvagnat,

2016), floods in Pakistan (Balboni et al., 2023) and across the world (Pankratz and

Schiller, 2021), or after a localized single natural disaster such as the 2011 Japan

earthquake (Carvalho et al., 2021; Boehm et al., 2019) or Hurricane Sandy in the US

(Kashiwagi et al., 2021). Studies at the firm level do not justify whether idiosyncratic

weather shocks have an important role in explaining macroeconomic fluctuations,

which should wash out once aggregated across units (Lucas, 1977). Input-output

linkages have been shown to matter for the economic cost of climate change in the

US (Rudik et al., 2022). This paper contributes to the macroeconomic literature on

the propagation of shocks by providing the first global estimate of the total economic

cost of temperature increases accounting for sectoral interlinkages.

The remainder of the paper is structured as follows. Section 2 lays out a con-

ceptual framework of the importance of input-output sectoral interlinkages for the

empirical estimation of weather shocks. Section 3 describes the data used in the

empirical analysis. Section 4 introduces the empirical approach. Section 5 shows

and summarizes the sectoral impact of weather shocks. Section 6 describes the main

empirical results of the propagation of weather shocks through the economy, which I

then use as the basis of counterfactual analyses in Section 7. Section 8 concludes.
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2 Theoretical framework

This section discusses the traditional conceptual framework adopted to derive empiri-

cal estimates of the effect of local weather shocks of local economic response functions

and then introduces a production network model to capture the role of sectoral in-

terlinkages as a propagation mechanism.

2.1 Local economic response to local weather shocks

The majority of the reduced-form climate impact studies motivates productivity

econometric specifications with a partial equilibrium model of production where the

economy consists of N regions (Burke et al., 2015; Dell et al., 2012). To match the

theoretical framework with the empirical approach, I describe here an economy con-

sisting of N regions, each populated with J sectors. Production possibilities for sector

i in region n are described by a constant returns-to-scale Cobb-Douglas technology

whose inputs are capital and labor:

Y i
nt = Z i

nt(K
i
n)

λ(Li
nt)

1−λ (1)

where total factor productivity Z i
nt is a product of three components: (i) a region-

sector specific component zin, (ii) a sector-year specific component z̃it (capturing for

instance sector-specific global technological innovations), (iii) an exponential vector

of temperature effects T i
nt with sector-specific elasticities βi. Taking the log and

rearranging in terms of output per worker, one obtains:

log
Y i
nt

Li
nt

=
1

1− λ
[log zin + log zit + f(T i

nt, βi)] +
λ

1− λ
log

(
Ki

n

Y i
nt

)
(2)

Traditionally, one would estimate the reduced-form effect of temperature β̂ on out-

put per capita under the assumption that the residual variation in temperature once

absorbed unit- and time-specific unobserved heterogeneity is not correlated with the

error term and that unit-specific capital-to-output ratio is constant.3 The following

3For illustrative simplicity, I consider a simplified example with univariate climate, where pro-
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section outlines a production network model where weather shocks propagate through

the economy by altering input prices/quantities or demand for intermediate inputs.

This approach introduces additional real-world features to previous reduced-form at-

tempts to quantify the economic cost of climate change.

2.2 Weather shocks in a production network model

Idiosyncratic micro shocks can propagate through input-output production networks

and impose substantial fluctuations at the aggregate level (Carvalho et al., 2021;

Acemoglu et al., 2012). I present a simple model that is able to capture how weather

shocks can propagate through the production network, affecting sectors not directly

hit by the shock (Carvalho and Tahbaz-Salehi, 2019; Acemoglu et al., 2016; Carvalho,

2014). As before, consider an economy that consists of N regions, each with J sectors

specialized in different goods. The production process at each of these sectors i is

approximated by a Cobb–Douglas technology, similar to the one presented in Section

2.1, with the major exception that intermediate inputs from other sectors and regions

enter the production function with constant returns to scale (ωi
n +

∑J,N
j,m ωij

nm = 1),

such that

Y i
nt = Z i

nt[(K
i
n)

λ(Li
nt)

1−λ]ω
i
n

J,N∏
j,m

(
xijnmt

)ωij
nm

(3)

where xijnm is the input from sector j in region m used in the production of good i

in region n. The exponent ωij
nm ∈ [0, 1] represents the share of good j from region m

in the total intermediate input use by sector i in region n, which can be equal to zero

if it is not used. The larger ωij
nm, the more important the good from the sector-region

tuple (j,m) is. To keep the model simple, all production technologies have the same

capital intensity λ and the only difference arises from the the intensity with which

ductivity only depends on temperature without loss of generality, but one can include a matrix of
weather variables and study Jacobian matrices instead of first-order derivatives. I consider Hicks-
neutral productivity shocks and abstract from other potential channels of the impact of temperature,
which could affect effective units of labor input (Nath, 2020) and capital equipment (Zhang et al.,
2018). In this case, estimates of Equation 2 would compound these three channels which cannot be
further disentangled.
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each sector’s good is used as an intermediate input by other sector-regions.

To understand the role of production network in propagating local sector-specific

weather shocks, consider the example of two sectors i and j in two different regions

n and m and assume for simplicity that the latter’s output is the only intermediate

input that i needs. Therefore, sector i’s output (with lowercase letters indicating

logs) is written as:

yint = log zin + log zit + f(T i
nt, βi) + ωi

nλk
i
n + ωi

n(1− λ)lint︸ ︷︷ ︸
Ξi
nt

+ωij
nm log

(
xijnm

)
= Ξi

nt + ωij
nm

(
log zjm + log zjt + f(T j

mt, βj) . . .
) (4)

Using Equation 2 to move from the first to the second line, this example showcases

that changes in temperature alter input production j in region m and affect sector i’s

output in region n through the production network with elasticity ωij
nm. The relative

weight of shocks in the production network is given by the share of good j within

the total intermediate inputs used by sector i, which corresponds to the entries of the

(J · N × J · N) input-output matrix Ω = [ωij
nm].

4 The matrix (whose rows sum up

to one because of constant return-to-scale technologies, and whose columns are the

shares of sector j’s output within the total inputs used by the other sectors) accounts

for first-order effects of propagation through first-degree sectoral interlinkages. To

account for higher-order interlinkages, one can compute the Leontief inverse matrix

as L = (I − Ω)−1, whose (i, j) elements denote the importance of sector j as a direct

and indirect supplier to sector i. The inner product of elements ω in the input-output

matrix Ω (or ℓ in the Leontief matrix) and the temperature vector gives the aggregate

economic cost of warming. Hereinafter, I explain how I bring this model to the data

and quantify the cost of local and indirect weather shocks on the economy.

4The Cobb-Douglas production technology ensures that a sector’s expenditure on various inputs
as a fraction of its output is invariant to the shocks and is thus exogenous in the model. Carvalho
et al. (2021) study a more complex case with production functions with a nested constant elasticity
of substitution structure and show the propagation of shocks through two distinct channels using a
first-order approximation in the elasticities of substitution between various intermediate inputs or
between the intermediates and primary factors of production.
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3 Data

This section provides a summary of the main data sources used to empirically test

the hypothesis that weather shocks affect sectoral production and propagate through

input-output interlinkages. To do so, I combine data on sector-level economic pro-

duction (Section 3.1), weather (Section 3.2), and sectoral interlinkages (Section 3.3).

3.1 Sectoral production data

The Economic Statistics Branch of the United Nations Statistical Division (UNSD,

2022) provides Gross Value Added (GVA) in constant 2015 USD following the Inter-

national Standard Industrial Classification (ISIC rev. 3.1) for all countries from 1970

through 2020.5 The data set categorizes sectors into six broad groups (ISIC code

in parentheses), which provides the most comprehensive source of global economic

production disaggregated by sector: agriculture, hunting, forestry, and fishing (A-B);

mining, manufacturing and utilities (C-E); construction (F); wholesale, retail trade,

restaurants, and hotels (G–H); transport, storage, and communication (I); other ac-

tivities (J–P).6 The latter encompasses, among others, the financial sector, real estate,

public administration, education and health. Table A1 presents summary statistics

for sectoral production. Although unbalanced, the sector-country panel dataset covers

all countries in the world for most of the 46 years in the analysis.7

3.2 Weather data

I use daily temperature and precipitation data from the global reanalysis ERA-

5 dataset compiled by the European Centre for Medium-Range Weather Forecasts

5The final sample of countries and their frequency is reported in Table A2.
6The original data are available for seven sectors, since GVA in manufacturing (ISIC D) is also

provided standalone. I depart from previous articles using these data (Kunze, 2021; Hsiang, 2010)
and consider mining, manufacturing and utilities (ISIC C-E) as one single sector, since it is not
possible to obtain a separate measure of GVA sectoral production in mining and utilities (ISIC C &
E) from manufacturing (ISIC D) because value added across sectors is not additive.

7On average, information for each sector-country tuple is available for 44 years. Most of the
sectors are covered for the entire time period except for recent geopolitical changes.
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(ECMWF) (Muñoz Sabater, 2019).8 ERA-5 is available on a 0.25◦ × 0.25◦ resolution

grid (≈ 28km at the Equator) from 1950 to the present.

Following conventional methodologies (Hsiang, 2016), I compute any nonlinear

transformation at the grid cell level before averaging values across space using grid-

level weights and accounting for fractional grid cells that partially fall within a coun-

try. To have a measure of weather exposure for the average individual in a country,

I aggregate grid-cell level information using time-invariant population weights from

the 2000 Landscan dataset (Bright and Coleman, 2001). When constructing measures

for the agricultural sector, I weigh grid-cell data by the proportion of each grid cell

under cropland in 2000, using the Global Agricultural Lands dataset (Ramankutty

et al., 2010). To construct sector-specific weather shocks for certain countries, I rely

on Eurostat data on GVA by industry (NACE Rev. 2) at the sub-national level for

34 European countries9 and take a weighted average by the average sectoral economic

production in the first available five years for each sub-national administrative unit.

Since the beginning of the reduced-form approaches to the output-temperature

relationship, temperature has been used in levels (Burke et al., 2015; Dell et al.,

2012). The non-stationarity of temperature levels, however, introduces concerns on

the identification strategy (for a deeper discussion, see Appendix Section C and Tol

(2022); Kahn et al. (2021)).10 To construct an unexpected plausibly exogenous shock

in temperature, I rely people’s climate beliefs being built upon long-run climatic con-

ditions (Carleton et al., 2022), and adaptive responses based on their expectations

8Reanalysis data combine model data with observations from across the world into a globally
complete and consistent dataset using the laws of physics and rely on information from weather
stations, satellites and sondes, removing biases in measurement and creating a coherent, long-term
record of past weather (see Auffhammer et al. (2013) for a discussion of reanalysis weather data).

9I use NUTS-3 level information from 31 countries (Albania, Austria, Belgium, Bulgaria, Croatia,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy,
Latvia, Lithuania, Malta, Netherland, Norway, Poland, Portugal, Republic of North Macedonia,
Romania, Serbia, Slovakia, Slovenia, Sweden, Türkiye, Serbia, Spain) and NUTS-2 level for three
other countries (Cyprus, Luxembourg, Montenegro).

10An alternative solution examined in Appendix Section F is to use changes in temperature levels
(Akyapi et al., 2022; Newell et al., 2021; Letta and Tol, 2019). Nevertheless, this measure does not
inform how atypical the weather realization is with respect to individual expectations since it neglects
any information provided by the levels and assumes that individuals rationally update their beliefs
annually, under an implicit instantaneous model of adaptation. Similarly, weather realizations above
or below certain absolute thresholds (e.g., 30◦C) and binned response functions may not be globally
informative since only a subset of countries experiences such levels (Osberghaus and Schenker, 2022).
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(Shrader, 2021). I consider country-specific distributions and compute the annual

number of days that belongs to the top/bottom pth-percentile of the country-specific

distribution over the fifty-year period (where p ∈ {1; 5; 10}). These events should

be interpreted as abnormally cold and hot, or dry and wet, respectively, for the bot-

tom and top percentile of the distribution of temperature and precipitation. Using

this methodology, the measure is evenly distributed across countries, and any abnor-

mal realization is compared to the country-specific climatic norm.11 Country-specific

time-invariant thresholds account for the influence of long-run adaptation to climatic

conditions on the effects of certain weather realizations. This approach considers

an implicit model of adaptation assuming that societies adapt using as a baseline a

fifty-year time-invariant climate norm.

3.3 Production network

I use Input-Output (IO) data from EORA26 (Lenzen et al., 2012; Kanemoto et al.,

2011) to define the production network and analyze how idiosyncratic weather shocks

propagate. This data set contains information on 26 sectors for 189 countries from

1970 to 2021.12 I examine the propagation of weather shocks through a pre-determined

slowly evolving production network, where input-output interlinkages are averaged

over previous five years for each decade to smooth annual variation and account

for the intensification of inter-sectoral production linkages over time with more frag-

mented global supply chains and intensive use of intermediate inputs.

A potential concern is that the production network endogenously adjusts to weather

shocks. I allay this concern in three ways. First, Kunze (2021) documents a small

and negligible shift of sectoral interlinkages after tropical cyclones at the same level of

sectoral disaggregation. Second, I also test for this assumption in Appendix Section

D and find a small and no statistically significant effect of heat shocks on sectoral

interlinkages. Third, as a robustness, I construct a time-invariant production network

11I reject the null hypothesis of non-stationary series for all these variables performing the Im-
Pesaran-Shin (Im et al., 2003) panel unit root test. Results are reported in Table A4.

12I map the 26 sectors to the six sectors described in Section 3.1 as reported in Table A3.
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with the first five years of the IO matrix (see Appendix Section E for details).

3.3.1 Construction of network shocks

I construct network shocks that hit other sectors and propagate through input-output

interlinkages accounting for the geographic location and position in the supply chain

of trade partners. First, I distinguish between shocks originating in the same country,

domestic, and those originating in others, foreign. Second, I classify network shocks

into downstream and upstream depending on whether they hit sectors that are re-

spectively suppliers or customers of the sector of interest. From the perspective of

the sector of interest, downstream shocks originate in supplier sectors and travel in

the same direction as intermediate inputs. In contrast, upstream shocks hit customer

sectors and travel upstream to the sector of interest.13

As theoretically described in Section 2.2, network shocks are constructed using

entries from the inter-country IO tables described in Section 3.3 with different weights

for upstream and downstream shocks. From the perspective of sector i in country c,

downstream shocks are weighted by

ωi,c,j,m,τ =
inputjmτ→icτ∑

lf∈Θic

inputicτ→lfτ

(5)

i.e., the average ratio of the inputs of i in country c produced by sector j in

country m over total inputs supplied to its set of customer sector-countries Θic over

the previous five years τ for each decade. These weights reflect the inputs sector-

country ic needs from sector-country jm to produce one output unit. Conversely, the

weights associated with upstream shocks are constructed as

ω̂i,c,j,m,τ =
inputicτ→jmτ∑

lf∈Θ̂ic

inputicτ→lfτ

(6)

i.e., the ratio of the inputs of sector-country ic to each sector-county jm over the

13Appendix Figure A1 shows the average upstream and downstream weights of each sector across
countries.
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total inputs supplied to its set of customers Θic. These upstream weights reflect the

importance of each customer for the sector-country of interest ic.

As a first step, I consider network shocks based on geographic location of part-

ners (domestic or foreign), taking an unweighted average of upstream and down-

stream weights (ωicjm). When distinguishing by supply chain position, there are four

different network shocks: downstream domestic (DnD), upstream domestic (UpD),

downstream foreign (DnF), and upstream foreign (UpF), constructed as follows:

ShockDnD
i,c,t =

∑
j ̸=i

ωi,c,j,c,τShock
Own
j,c,t (7)

ShockUpD
i,c,t =

∑
j ̸=i

ω̂i,c,j,c,τShock
Own
j,c,t (8)

ShockDnF
i,c,t =

∑
j

∑
m̸=c

ωi,c,j,m,τShock
Own
j,m,t (9)

ShockUpF
i,c,t =

∑
j

∑
m̸=c

ω̂i,c,j,m,τShock
Own
j,m,t (10)

where ShockOwn
j,m,t is a weather shock hitting sector j in country m in year t.14

4 Empirical Approach

The empirical analysis is conducted in two steps. First, I estimate the sector-specific

response in per capita GVA growth rate to weather shocks. Second, I introduce a

parametric measure of spillovers to analyze how weather shocks hitting other sectors

domestically and abroad affect local sectoral economic production.

4.1 Sector-specific response to local weather shocks

The baseline specification estimates the sector-specific output response to local weather

shocks using a pooled sample of sectoral GVA per capita growth rates across 183

countries over 45 years:

14Except for the agricultural sector all over the world and for all sectors in 33 European countries,
weather shocks are not sector-specific, as detailed in Section 3.2.
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∆ log(GV A)ict = fi(Wc(i)t) + αic + µit + εict (11)

where I regress the growth rate of GVA per capita in sector i in country c in

year t (approximated by the first difference in logarithms) on a sector-specific func-

tion of weather variables W in country c in year t. I include country-sector fixed

effects to account for unobserved heterogeneity that influences countries’ average sec-

toral growth rates, such as history, culture, or topography and time-invariant sectoral

compositions of national output (Burke et al., 2015), and sector-year fixed effect to

capture year-specific worldwide shocks, such as El Niño events or global recessions,

and to specific sectors (e.g. agricultural commodity price shocks).15 Standard errors

are clustered at the country level to account for spatial correlation of the error terms

across sectors in the same country over time.

Differently than previous cross-country empirical evidence on the channels of the

impact of weather shocks on sectoral outcomes (Acevedo et al., 2020; Dell et al.,

2012), I estimate a pooled, multi-country, sector-specific response function. This

model allows me to jointly estimate responses of sectoral economic production to

weather shocks and compare the different response functions.

Based on the construction of weather shocks explain in Section 3.2, I estimate

the effect of an increase in the number of days of abnormal weather realizations in a

year for temperature and precipitation using days in the rest of the distribution as

the baseline category. Equation (11) relies on conventional identifying assumptions

in climate impact studies, exploiting plausibly exogenous within-country variation in

annual weather fluctuations, orthogonal to changes in sectoral economic production

and to weather in other locations (Hsiang, 2016).16

In particular, the traditional fixed-effect models implicitly assume that the resid-

15I do not include any other traditional time-varying determinants of sectoral production - such
as investments or capital stocks - since they are endogenous to weather variations and may thus
introduce bias in the estimates (Dell et al., 2014).

16This approach uses random weather shocks as identifying variation, which differ from climate
change (Mendelsohn and Massetti, 2017). Short-run and long-run elasticities to weather fluctuations
are the same only under certain assumptions (Lemoine, 2023), therefore one should be cautious in
extrapolating long-term impacts from the estimated short-term responses.
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ual variation in weather is orthogonal to variations in weather elsewhere. Climate

change, however, is expected to alter atmospheric conditions across the world in-

ducing changes in productivity that are spatially correlated (Dingel et al., 2021).

Estimates obtained from Equation (11) may thus be biased when omitting trade

linkages across observational units while weather shocks are spatially correlated by

violating the stable unit treatment value assumption (SUTVA). Potential outcomes

for a sector-country may vary with the treatment assigned to other sector-countries

they use inputs from. Spatial considerations are of first-order relevance because the

economy and climate are linked across space, which results in violations of common

identifying assumptions with first-order effects. One approach to address this concern

is to use economic primitives as the outcome of the regression, such as productivity or

the share of expenditure on goods from other markets over own expenditures (Rudik

et al., 2022). Conversely, equations using economic production measures such as GDP

or GVA suffer from bias induced by spatial considerations through the multilateral

trade effects and correlated spatial patterns in temperature. In the following sec-

tion, I describe an econometric specification that introduces a parametric measure of

spillovers induced by sectoral interlinkages.

4.2 Propagation of weather shocks

To introduce a new impact channel of weather shocks rippling through the supply

chain via sectoral interlinkages, I design an econometric specification that accounts

for network shocks:

∆ log(GV A)ict = γiShock
Own
ct +

∑
J

γJi Shock
J
ct + αic + µit + ηict (12)

where I include shocks in partner sectors J by geographic location and supply

chain position. I begin by including domestic and foreign weather shocks weighted by

the average interdependence of sector i with other sectors in the same country c and

other countries (i.e., J ∈ {D; F}). Then, I also disentangle upstream and downstream

weather shocks (i.e., J ∈ {DnD; UpD; DnF; UpF}).
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This approach aims at quantifying the impact on sectoral production of trade-

induced exposure to weather shocks in other sectors. Weather shocks elsewhere affect

sectoral market access which could improve or deteriorate depending on market forces

and trade relationships with other sectors. Although this paper does not formally pin

down the channel through which weather shocks affect supplier production functions

and customer demand, this approach uncovers the role of the propagation channel for

quantifying sectoral weather shocks.17 By only considering the direct impact of local

weather shocks on a given sector, one is omitting the amplification and transmission

of such shocks due to the intersectoral reliance. A negligible or null effect of local

weather shocks on a given sector may be amplified or mitigated by weather shocks

hitting other sectors with strong commercial interlinkages.18

The direction of the potential bias induced by violating the SUTVA assumption

is ex-ante ambiguous since it depends on market forces, the network structure of the

trade relationship and on the supply chain position of the treated trade partners (Ace-

moglu et al., 2016). Differently from other sectoral shocks previously studied (Atalay,

2017), weather shocks can a priori be either demand- or supply-side shocks and have

ambiguous effects and directions of propagation. As formulated in the theoretical

framework, adverse weather shock may reduce the productivity of a sector (Nath,

2020; Graff Zivin et al., 2018). In this case, the effect would ripple down to down-

stream customer sectors that use the input less intensively and thus reduce their own

production. On the one hand, they can induce changes in input demands by customer

sectors. In this case, weather-induced demand shocks would propagate upstream and

affect suppliers of the sectors hit. The assumption on the Cobb-Douglas production

function facilitates the study of the two mechanisms at play where downstream effects

17Sectoral output can incur losses from climate through different channels (Carleton and Hsiang,
2016). For instance, weather is an input in crop production and can directly harm agriculture
(Schlenker and Roberts, 2009; Hultgren et al., 2022). Sectors can experience losses due to reductions
in labor supply and productivity (Graff Zivin and Neidell, 2014; Graff Zivin et al., 2018; Rode et al.,
2022), total factor productivity (Zhang et al., 2018; Letta and Tol, 2019), or damages to assets and
infrastructure (Hsiang and Jina, 2014; Bakkensen and Barrage, 2018; Fankhauser and Tol, 2005).

18A potential worry about firms within a sector endogenously selecting trade partners based on
their location and their exposure to weather shocks would not be a threat to the identification of
the transmission of shocks, since it would bias the results against finding any effect.
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emerge only in the case of supply-side shocks and upstream effects from demand-side

shocks. Through either of these mechanisms, non-local weather shocks can impact

sectoral production creating powerful propagation.

5 Sectoral impact of weather shocks

I first explore the extent to which local abnormal temperature and precipitation

realizations affect sectoral economic production. In Appendix Section F, I present

the results using alternative measures of temperature and precipitation.

5.1 Abnormal weather realizations

Figure 1 shows the (standardized) coefficients associated with the number of days

above the 95th and below the 5th percentile of the temperature and precipitation dis-

tribution. Figure 1a confirms findings consistent with prior literature that agriculture

is the sector that is most harmed by heat shocks. An additional day above the 95th

percentile of the daily temperature distribution in the sample reduces the agricultural

growth rate by 0.03 percentage points (16% of its sample mean). Cold temperature

shocks have a similar effect, by harming crops that cannot grow below a certain tem-

perature. An additional day below the 5th percentile reduces the agricultural growth

rate by 8% of its sample mean. Most of the other sectors seem not to respond to tem-

perature shocks, neither hot nor cold, and estimates are very similar in magnitude,

providing little evidence of asymmetry in the relationship between sectoral produc-

tion and abnormal realizations of temperature from its historical norm. Conversely,

precipitation shocks do not substantially affect sectoral production, except for a posi-

tive effect of wet days on agricultural production and dry days on transport, storage,

and communication (Figure 1b).19

19There are two potential explanations. First, wet and dry shocks may not be adequate indicators
of water availability (Russ, 2020; Proctor et al., 2022). In an earlier draft of this paper (Zappalà,
2023), I explore sector-specific responses to a measure of dryness that accounts for potential evap-
otranspiration (SPEI) using a more complete picture of the water availability cycle and document
a strong negative effect of dryness on agriculture and a masked response in other sectors. Sec-
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Figure 1. Local abnormal weather realizations and sectoral value added

(a) Hot and cold temperature shocks

(b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the country-average number of
days above the 95th and below the 5th percentile of the daily distribution in temperature (Panel (a))
and in precipitation (Panel (b)). All sector-specific coefficients are estimated jointly in a stacked
regression model fully saturated with country-sector and sector-year fixed effects. Bins represent the
95% confidence intervals around point estimates. Standard errors are clustered at the country level.

ond, precipitation exhibits considerable spatial variation and aggregation at the country level may
mask meaningful variation, as documented by studies showing that precipitation anomalies reduce
sub-national economic growth (Holtermann, 2020; Damania et al., 2020; Kotz et al., 2022).
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Heterogeneity across adaptation potential. The impact of weather shocks may

differ as a function of factors that influence the adaptation potential of countries,

including income and climate. First, richer countries have less binding budget con-

straints and wider adaptation capacity to cope with weather fluctuations. Second, a

hotter climate may differentially incentivize adaptive investments as returns to adap-

tation would be relatively higher for more frequent temperature changes. I estimate

heterogeneous temperature-output relationships by interacting the vector of temper-

ature and precipitation coefficients with income and climate terciles from long-run

average value added per capita and temperature (Figure A2 shows the sample com-

position) (Nath, 2020; Carleton et al., 2022).

Figure A6 graphically presents the coefficient associated with heat shocks inter-

acted with income and climate terciles. As conjectured, results are consistent with

the hypothesis that income is protective (Panel a). Agriculture production is shel-

tered in high value-added economies and the negative effect of local heat shocks

is significant across various sectors (construction; mining, manufacturing, utilities;

transport, storage and communication; wholesale, retail trade, restaurants and ho-

tels) in low value-added countries. Similarly, heat shocks are particularly harmful for

agricultural production in cold countries (Panel b), where construction and transport

sectors, however, benefit from hot days (since milder weather conditions can facilitate

outdoor activities).

Robustness. The baseline results are robust to the definition of “abnormal” (using

top/bottom 1st or 10st percentile of the daily distribution (Appendix Figures A7

and A8). Results are also robust to estimating the baseline equation in a balanced

panel, excluding large countries (i.e., Brazil, China, India, Russia, US), controlling for

lagged growth and to alternative specification and fixed effects (linear and quadratic

country-specific trends, sub-region by year fixed effects) (Appendix Figure A9).

Time-varying climate norms. Instead of fixing the weather distribution to the

fifty-year period, one can construct measures of temperature and precipitation rela-

tive to their time-varying historical norms, I construct time-varying country-specific

distributions over the previous m years for each t, where m ∈ {20; 30; 40}. Different
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lengths of historical norms imply different belief formation and adaptation processes

(the longer the time span of the historical norm, the slower individuals update their

beliefs and treat the new distribution as the new norm). Smaller climate damage for

shorter time spans over which the distribution is computed would provide suggestive

evidence on the rate of speed of adaptation (Kahn et al., 2021). In all three cases, I

consider data starting from 1990 to compare estimates across time-varying historical

norms with different time spans from the same sample.

Results are very similar to baseline estimates (Appendix Figure A10). Assuming

different speeds of change for the historical climate distribution (20-, 30- or 40-year)

does not significantly alter the estimates. The negative effect of heat shocks on

agricultural production is persistent, suggesting that adaptation has not entirely offset

climate damages. There is some suggestive evidence of adaptation to cold shocks

with the point estimate that is statistically significant and negative as one assumes

the climate norm to last 20 years and is not significant using a 40-year climate norm.

One cannot reject the hypothesis that adaptation has not taken place in other sectors

(transport, storage and communication; other activities), where negative effects are

more muted, and sometimes positive, for faster time-varying climate norms. Results

are similar and robust alternative percentile cut-offs (Appendix Figures A11 and A12).

6 Heat shocks in a production network

In this section, I report the results from the estimation of Equation (12) that quan-

tifies the propagation of weather shocks across the economy through the production

network. Given the robust strong evidence of the negative effect of heat shocks in

the economy, I focus on the number of days above the 95th percentile of the country-

specific temperature daily distribution.

Domestic and foreign shocks. Figure 2 displays the (standardized) coefficients

associated with local and network heat shocks decomposed into domestic and foreign.

Starting from the coefficients on local heat shocks, the effect is negative and statisti-

cally significant only for agriculture. The estimated effect of local heat shocks on all
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the other sectors is not distinguishable from zero, although it is positive and larger

in magnitude than in the conventional regressions in Section 5.

Domestic shocks have a negative and sizable effect on economic production in

all the sectors of the economy, although imprecisely estimated for mining, manufac-

turing, and utilities, and other activities. In particular, the magnitude of the effect

of domestic network shocks is substantially large for the construction sector, which

relies heavily on various inputs from agriculture (e.g., timber, bamboo, straw and

hay, natural fibers, plant-based binders, soil and gravel, biofuels, geotextiles) and

produces investment goods, more vulnerable to climate change than e.g. the retail

sector, which primarily produces consumption services (Casey et al., 2021). Foreign

heat shocks also have a negative and significant effect on sectoral production in the

economy, suggesting that heat shocks propagate to other sectors which are usually

non-responsive to direct weather shocks.

The findings have two consequences in the interpretation of previous temperature-

output relationships. First, sector-specific estimates that only account for local

weather shocks may be biased since the treatment status of other units in the sample

alters the potential expected outcome through shocks propagating from other sectors.

The statistical and economic significance of foreign network shocks suggests that also

geographically distant weather fluctuations matter through trade interlinkages. Sec-

ond, weather shocks are amplified in the economy through input-output interlinkages,

affecting other sectors beyond agriculture and travelling beyond national borders. As

a result, recent estimates on the economic damage of temperature increases may have

been largely underestimated due to the omission of this propagation channel.

The global nature of climatic changes poses fundamental identification challenges

on spillovers due to spatially correlated patterns in weather fluctuations everywhere

(Dingel et al., 2021). To address this potential concern, in alternative specifications,

I account for country-specific linear trends and year-specific fixed effects at the con-

tinent and regional level (Deschênes and Meng, 2018).20 This approach exploits local

20Regions divide the world into 17 zones: Australia and New Zealand, Central Asia, Eastern Asia,
Eastern Europe, Latin America and the Caribbean, Melanesia, Northern Africa, Northern America,
Northern Europe, Polynesia, South-eastern Asia, Southern Asia, Southern Europe, Sub-Saharan
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weather variation uncorrelated with contemporaneous weather elsewhere within the

same continent/region. Domestic shocks have a strong negative effect, whereas for-

eign shocks are less precisely estimated, suggesting that most of the spillovers from

foreign trade partners come from within the same continent (Appendix Figure A13).

Results are also robust to estimating the equation in a balanced panel, excluding large

countries, using different percentile cut-offs, and a time-invariant production network.

Using a time-varying definition of climate norm over the previous 30 years, domestic

heat shocks are not statistically significant, suggesting evidence of adaptation to local

climate. Nevertheless, foreign heat shocks remain negative and significant, emphasiz-

ing the critical importance of accounting for the interconnected global supply-chain

dynamics, as disruptions in other countries can reverberate domestically and impact

sectoral production (Appendix Figure A14).

Agricultural channel. Given that local weather fluctuations affect only agricul-

tural production, I focus on the propagation of agricultural heat shocks through the

supply chain and document a strong negative effect both of domestic and foreign

agricultural heat shocks on value added in all the other five sectors in the economy

(Appendix Figure A15). Similar coefficient estimates as baseline results suggest that

agriculture is the main channel of transmission of shocks. For this reason, the re-

mainder of the analysis examines agricultural heat shocks.

Upstream and downstream shocks. Since shocks can propagate differently from

different stages of the supply chain (Acemoglu et al., 2016), I decompose domestic

and foreign agricultural heat shocks into upstream and downstream. Temperature

is a direct input to the agricultural production function, therefore heat shocks can

be interpreted as shocks on the weather-related component of productivity. From

the theoretical framework, it follows that supply shocks propagate downstream to

customer sectors. Figure 3 displays the five coefficients on network agricultural heat

shocks and local shocks for each sector. All five sectors have negative coefficients

associated with both foreign and domestic downstream, indicating that heat shocks in

Africa, Western Asia, Western Europe.
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Figure 2. Impact of network heat shocks on sectoral production

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks
and domestic and foreign shocks, using the average number of days above the 95th percentile of the
daily temperature distribution. Domestic shocks are the weighted average of heat shocks in the other
sectors in the same country as the sector of interest. Symmetrically, foreign shocks are the weighted
average of sectoral heat shocks in all the other countries weighted by the average of upstream and
downstream interdependence with each sector. All sector-specific coefficients are estimated jointly
in a stacked regression model fully saturated with country-sector and sector-year fixed effects and
accounting for sector-specific responses to temperature realizations below the 5th percentile and
sector-specific responses to precipitation realizations below the 5th and above the 95th percentile.
Bins represent the 95% confidence intervals with standard errors clustered at the country-level.

the agricultural sector are amplified by market reactions that slow down downstream

production (Wenz and Levermann, 2016).

Beyond first-degree sectoral interlinkages. The analysis has so far relied on

first-degree sectoral interlinkages in the production network. To account for the full

transmission of shocks over the network, I construct the Leontief inverse matrix, which

summarizes the sector-specific technical coefficients of the shock propagation through

a power series representation of the Leontief inverse (Leontief, 1970). By taking the

inner product of agricultural heat shocks and the Leontief inverse matrix, I obtain a

sector-specific shock that takes full inter-sectoral relations into account. I estimate

a specification with agricultural heat shocks weighted by the Leontief-derived down-

stream coefficients and report the coefficients in Figure 4. Both domestic and foreign
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Figure 3. Local and downstream agricultural heat shocks on sectoral production

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks
and domestic and foreign shocks distinguished between upstream and downstream, using the average
number of days above the 95th percentile of the daily temperature distribution. Domestic upstream
(resp. downstream) shocks are constructed as the average weather shock in the other sectors in the
same country as the sector of interest weighted by the upstream (resp. downstream) interdependence
with each sector. Symmetrically, foreign upstream (resp. downstream) shocks are constructed as
the average weather shock in other sectors abroad weighted by the upstream (resp. downstream)
interdependence with each sector. The figure reports only the coefficients associated with agriculture,
other activities and wholesale, retail trade, restaurants and hotel, the specification jointly estimates
all sector-specific coefficients in a stacked regression model fully saturated with country-sector and
sector-year fixed effects and accounting for sector-specific responses to temperature realizations below
the 5th percentile and sector-specific responses to precipitation realizations below the 5th and above
the 95th percentile. Bins represent the 95% confidence intervals with standard errors clustered at
the country level.

agricultural heat shocks are strongly negative and statistically significant, with do-

mestic shocks larger in magnitude. The results suggest that downstream propagation

of heat-induced productivity shocks in the agricultural sector has quantitatively siz-

able effects on the rest of the economy both from direct and indirect suppliers.

Time persistence of network shocks. Results show the negative effect of short-

run contemporaneous domestic and foreign shocks on sectoral value added. There is

a long-standing debate on the “growth-vs-level” effect of temperature shocks (see Tol

(2022) for a review), with evidence documenting both persistent (Nath et al., 2023;
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Figure 4. Sector-specific response to agriculture heat shock in a Leontief matrix

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks
and domestic and foreign downstream shocks in the agricultural sector, using the average number
of days above the 95th percentile of the daily temperature distribution weighted by the Leontief
inverse matrix obtained from the downstream sectoral interlinkages obtained as in Section 3.3.1.
The specification jointly estimates all sector-specific coefficients in a stacked regression model fully
saturated with country-sector, country-year, sector-year and region-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th percentile and sector-specific
responses to precipitation realizations below the 5th and above the 95th percentile. Bins represent
the 95% confidence intervals with standard errors clustered at the country level.

Kahn et al., 2021; Bastien-Olvera et al., 2022), and level effects (Akyapi et al., 2022;

Newell et al., 2021; Kalkuhl and Wenz, 2020). I examine longer-run effects of local

and network agricultural heat shocks estimating a set of local projections to obtain

impulse response functions.21 I begin by estimating local projections on the total

gross value added at the country level and document an imprecise and quantitatively

small effect of domestic and foreign heat shocks on total-value added, suggesting that

using aggregate measures at the country-level the effect of network heat shock is not

economically meaningful nor persistent (Appendix Figure A17).

Figure 5 displays the sector-specific impulse response functions for a standardized

21Local projections are more robust to misspecification of the data-generating process and to lag
length by not imposing dynamic restrictions as in autoregressive distributed lag models (Jordà,
2005).
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heat shock obtained from the estimation of a stacked, multi-country, sector-specific

regression. Local heat shocks do not have a persistent effect on sectoral production.

In particular, agriculture is the only sector that is harmed whereas the others ap-

pear relatively inelastic to heat shocks (Appendix Figure A18 displays the IRFs to

local heat shocks also for the other five sectors). The negative effect on agriculture

lasts only one year and dissipates thereafter, confirming no visible long-run growth

effects, but only a temporary effect on agricultural GVA levels. Moving onto the

persistence of agricultural heat shocks propagation in the other sectors, results show

negative persistent effects throughout all the sectors. Losses are larger in magnitude

for domestic heat shocks and for the construction, and the mining, manufacturing,

and utilities sectors. The stickiness of the production processes at the sectoral and

geographic level of the analysis may explain the persistence of network heat shocks

(Kunze (2021) and Appendix Section D).22

7 Counterfactuals: Cost of recent warming in a

production network

To assess the economic importance of the propagation of weather shocks through

production networks, I perform two counterfactual analyses. First, I compare the

differential sectoral output losses/benefits as a result of recent historical warming.

Prior research quantifies and projects the impact of temperature increases assuming

a counterfactual with no further warming (Burke et al., 2015; Burke and Tanutama,

2019; Kalkuhl and Wenz, 2020). To account for adaptive adjustments to changes in

climate, I simulate how much slower or faster each sector would have grown over the

2001-2020 period, compared to a counterfactual in which daily temperature linearly

evolves from its 1970-2000 long-run average, omitting and accounting for temperature

shocks in the production network (see Appendix Section G for additional details).

22Agricultural heat shocks spill over other sectors also when accounting for continent-sector-year
fixed effects (Appendix Figure A19) and for continent-sector linear trends (Appendix Figure A20) to
control for spurious correlation between differential regional trends in warming and sectoral economic
performance.
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Figure 5. Local projections of agricultural heat shocks on sectoral value added

Notes: Panels show the sector-specific impulse response function of sectoral per capita GVA growth
rate to a 1 SD increase in the domestic agricultural heat shocks estimated in a stacked regression
model fully saturated with country-sector and sector-year fixed effects and accounting for sector-
specific responses to direct and foreign heat temperature shocks, to cold shocks (below the 5th

percentile) and to precipitation realizations below the 5th and above the 95th percentile. Horizon 0
is the year of the shock. Shaded areas represent the 95% confidence intervals with standard errors
clustered at the country level.

Omitting shocks in sector partners substantially underestimates the losses due to

recent warming (Appendix Figure A21). The pooled average loss in annual GVA per

capita across sectors using only local shocks is 0.02% (-0.08% median, IQR [-0.29,

0.09]), whereas it is 0.32% (0.15% median, IQR [-0.13, 0.73]), accounting for network

shocks. Damages are particularly larger in those sectors that appear sheltered from

local shocks (other activities; transport, storage and communications), while there is

larger heterogeneity in relative losses in construction and wholesale, retail, hotel and

restaurants: larger damages in Sub-Saharan Africa, Latin America and South-East

Asia are offset by modest benefits in Northern Europe and the Middle East. Using

the country’s baseline sectoral breakdown of total GVA between 1996 and 2000, I

aggregate sector-specific damages to obtain the total national average relative losses.

Accounting for indirect heat shocks, country-level damages are substantial (0.33%
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mean, 0.26% median, IQR [0.06, 0.53]) and largely underestimated when omitting

heat shock propagation (0.10% mean, 0.05% median, IQR [0.00, 0.17]) (Figure 6).

Figure 6. Average annual per capita GVA losses (%) due to recent warming

Notes: The figure shows the average annual losses (in red) and gains (in blue) in per capita GVA (%)
compared to a counterfactual daily temperature evolved linearly from the trend estimated over the
period 1970-2000. Sector-specific damages are weighted by the average sectoral share of total GVA
between 1996 and 2000. The world map above only accounts for sector-specific direct heat and cold
shocks defined as the number of days above the 95th and below the 5th percentile of the temperature
distribution. The world map below accounts for shocks in other partner sectors using sector-specific
semi-elasticities from bootstrapping 1000 times the underlying panel estimates of Equation (12),
where indirect shocks are constructed with a time-varying production network that uses the first
five-year average input-output interlinkages for each decade. Sector-specific losses are reported in
Figure A21, Table A8 reports the sector-specific losses significant at 95% level estimated with 1000
bootstrap replications with replacement.

In a second exercise, I quantify the macroeconomic impact of an increase in one

abnormally hot day in a region or country from 2000 onwards. Figure 7 reports the

average annual global losses. The highest average loss (≈ 185 million 2015US$) is

recorded if each agricultural sector in the world experiences an additional hot day.

Large losses are also recorded if Sub-Saharan Africa, Eastern Europe, Eastern Asia
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or Latin America and the Caribbean suffer an additional hot day. These regions,

if shocked, induce larger losses on average due to larger relative damages on local

economic production. An alternative mechanism could be explained by a scale effect

since these regions have the largest number of countries contemporaneously shocked.

For this reason, I also compute average annual global losses if one single country

experiences an additional hot day (right-hand side of Figure 7). The importance of

the country in the production networks substantially matters for the magnitude of

heat-induced losses. On average, global losses are at the highest for an additional

hot day in China (≈ 80 million 2015US$) and in other countries such as Brazil (≈ 12

million 2015US$), France (≈ 14 million 2015US$), India (≈ 10 million 2015US$), and

the United States (≈ 5 million 2015US$). These losses are sizable since they simulate

one abnormally hot day and hot days have substantially increased over the time

period considered. For example, the decadal average number of hot days in China

in the 1970s was 11.8 days/year and reached 29.5 days/year in the 2010s. Similarly,

the number of hot days in Brazil increased from 6.3 days/year to 42.4 days/year and

from 7.9 days/year to 30.3 days/year in the US.

8 Conclusion

Recent studies in the climate impact literature have pushed forward the frontier for a

timely, accurate and local measure of climate damages across sectors for an adequate

quantification of the total economic impact of climate change. This paper contributes

to this effort by shedding light on a new potential component of climate damages,

arising from the propagation of weather shocks through production networks across

sectors and countries, and over time. Complementing firm-level evidence on the

spillover effects of natural disaster shocks, I build on prior research on production

networks (Acemoglu et al., 2012) to quantify the economic cost of global warming.

The methodology is applied to global production networks constructed from input-

output sectoral interlinkages for the past 50 years and sectoral value added data

combined with high-resolution daily temperature and precipitation data.
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Figure 7. Average annual global losses due to an additional abnormally hot day in a
specific sub-region (left) or country (right)

Notes: The figure shows the average annual global losses in 2015$ million by perturbing the produc-
tion network with an additional abnormally hot day in the sub-region (resp. country) reported in
the y-axis (x-axis), using sector-specific semi-elasticities from Equation (12), where indirect shocks
are constructed with a time-varying production network that uses the first five-year average input-
output interlinkages for each decade. Global averages only consider country-specific losses significant
at the 95% level using 1000 bootstrap replications with replacement.

The analysis reveals that the amplification mechanism of weather shocks persists

when aggregating units at the sector level and generates substantial fluctuations in

sectoral production. Sectors unresponsive to local weather suffer economic losses due

to the interdependence of their production process with other domestic or foreign

sectors that are hit by weather shocks. In particular, sectors at later stages of the

supply chain are negatively impacted by heat shocks in other sectors and countries,

with the effect mostly driven by downstream propagation of supply-side agricultural

heat shocks. I also document temporal persistence of network heat shocks. In light

of the negative and persistent impact of network shocks, these findings suggest that
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climate damages may be larger than indicated by standard empirical approaches and

integrated assessment models.

The findings point to the structure of sectoral production network linkages as a

key driver of aggregate fluctuations induced by weather shocks. In particular, they

indicate that even if most sectors with the exception of agriculture are sheltered

from weather fluctuations, the potential propagation of shocks over the economy’s

production network can impact them, thus resulting in movements in macroeconomic

aggregates. Using the reduced-form estimates of my analysis to inform counterfactual

simulations, I show that the omission of input-output linkages as a mechanism for

the propagation and amplification of shocks may lead to substantial underestimation

of the effect of recent warming around the world (0.1% vis-à-vis 0.33% GVApc ac-

counting for sectoral interlinkages) and global losses are sizable even for just a single

country being shocked in isolation, suggesting that countries that are more central in

the production network can induce larger global losses if hit by heat shocks.

Several important issues remain open to future research. First, the analysis pro-

vides modest but suggestive evidence on the role of adaptation of countries, in par-

ticular, that the effect of weather shocks depends on climate and income. However,

the analysis does not explicitly model adaptive investments, technological change, or

other sector-specific adaptive responses (e.g. irrigation, sea-walls...) that may het-

erogeneously affect the response functions and lower climate damage. Accounting

for other adaptive margins may also differentially drive the propagation of shocks in

countries that are more sheltered from weather shocks.

Second, the transmission of weather shocks is studied through the relative im-

portance of trade partners in input-output interlinkages. The input specificity and

elasticity of substitution are key drivers of the transmission of firm-level shocks (Bar-

rot and Sauvagnat, 2016). Weather shocks can differentially propagate in supply

chains that differ by industry supplier competitiveness, input concentration, and sup-

plier diversification (Pankratz and Schiller, 2021). These channels have only been

documented at the firm level and such additional layers of heterogeneity could shed

light on the exact channel of transmission of weather shocks through the economy.
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Third, sectoral reallocation is increasingly studied as a potential adaptive margin

to climate change (Nath, 2020; Desmet and Rossi-Hansberg, 2015). The analysis has

focused on a slowly evolving production network. Adjustments in trade patterns from

the substitution of affected sectors with sectors in unaffected places as a response to

idiosyncratic weather shocks seem a promising avenue for future research.

Last, the analysis is mostly silent about decision-makers’ climate beliefs and ex-

pectation formation processes. Despite the use of implicit models of adaptation ac-

counting for long-run climate, adaptive behavior reflects individual perceptions of

climate change more than actual meteorological conditions, with inaccurate beliefs

explaining substantial economic losses due to inadequate adaptation (Zappalà, 2022).

Similarly, expectations also matter in accounting for adaptation costs and benefits

(Shrader, 2021). Future research should focus on accounting for heterogeneous beliefs

and expectations in production networks and supply-chain relationships.
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Jordà, Ò. (2005). Estimation and inference of impulse responses by local projections.

American Economic Review 95 (1), 161–182.

Kahn, M. E., K. Mohaddes, R. N. Ng, M. H. Pesaran, M. Raissi, and J.-C. Yang

(2021). Long-term macroeconomic effects of climate change: A cross-country anal-

ysis. Energy Economics 104, 105624.

Kalkuhl, M. and L. Wenz (2020). The impact of climate conditions on economic

production. evidence from a global panel of regions. Journal of Environmental

Economics and Management 103, 102360.

Kanemoto, K., M. Lenzen, A. Geschke, and D. Moran (2011). Building Eora: a global

multi-region input output model at high country and sector. In 19th International

Input-Output Conference.

Kashiwagi, Y., Y. Todo, and P. Matous (2021). Propagation of economic shocks

through global supply chains -— Evidence from Hurricane Sandy. Review of In-

ternational Economics 29 (5), 1186–1220.

Kolstad, C. D. and F. C. Moore (2020). Estimating the economic impacts of cli-

mate change using weather observations. Review of Environmental Economics and

Policy .

36

https://ssrn.com/abstract=4222020


Kotz, M., A. Levermann, and L. Wenz (2022). The effect of rainfall changes on

economic production. Nature 601 (7892), 223–227.

Kotz, M., L. Wenz, A. Stechemesser, M. Kalkuhl, and A. Levermann (2021).

Day-to-day temperature variability reduces economic growth. Nature Climate

Change 11 (4), 319–325.

Kunze, S. (2021). Unraveling the effects of tropical cyclones on economic sec-

tors worldwide: direct and indirect impacts. Environmental and Resource Eco-

nomics 78 (4), 545–569.

Lemoine, D. (2023). Estimating the consequences of climate change from variation

in weather. NBER Working Paper 25008, National Bureau of Economic Research.

Lenzen, M., K. Kanemoto, D. Moran, and A. Geschke (2012). Mapping the structure

of the world economy. Environmental Science & Technology 46 (15), 8374–8381.

Leontief, W. (1970). Environmental repercussions and the economic structure: an

input-output approach. The Review of Economics and Statistics , 262–271.

Letta, M. and R. S. Tol (2019). Weather, climate and total factor productivity.

Environmental and Resource Economics 73 (1), 283–305.

Linsenmeier, M. (2024). Seasonal temperature variability and economic cycles. Jour-

nal of Macroeconomics 79, 103568.

Lucas, R. (1977). Understanding business cycles. Carnegie–Rochester Conference

Series on Public Policy 5, 7–29.

Mendelsohn, R. O. and E. Massetti (2017). The use of cross-sectional analysis to mea-

sure climate impacts on agriculture: theory and evidence. Review of Environmental

Economics and Policy 11 (2), 1–20.

Miller, S., K. Chua, J. Coggins, and H. Mohtadi (2021). Heat waves, climate change,

and economic output. Journal of the European Economic Association 19 (5), 2658–

2694.

37
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A Additional figures

Figure A1. Average upstream and downstream weights across countries

(a) Upstream (b) Downstream

Notes: The figure shows the average upstream and downstream weights across countries by sector.
Upstream and downstream weights are constructed from the perspective of Source sectors on the
x-axis.
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Figure A2. Countries in the sample by climatic zone

Notes: The map represents the countries in the sample divided by climatic zones, defined as terciles
of the average annual temperature from 1970 through 2020. The classification is implemented in
order to compute heterogeneous treatment effects as reported in Figure ??.
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Figure A3. Sectoral interlinkages’ response to heat shocks

(a) Average weights (b) Upstream weights

(c) Downstream weights

Notes: The figure shows the (standardized) coefficients associated with the response of bilateral
sectoral interlinkages to heat shocks (measured as the number of days above the 95th percentile of
the temperature distribution) in the period between 1970 and 2019. All sector-specific coefficients
are estimated jointly in a stacked regression model fully saturated with country-sector and origin-
destination bilateral sector, destination sector-country-year fixed effects. Bins represent the 90%
confidence intervals with standard errors clustered at the country-level.
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Figure A4. Sector-specific impact of positive annual temperature and precipitation
changes

Notes: The figure shows the OLS coefficients associated with the response of sectoral GVA per capita
growth rate to an indicator variable that takes value one if the sum of average daily temperature
and precipitation is larger than the previous year’s. The regression controls for lagged sectoral GVA
growth rate, country-sector, sector-year fixed effects. Bins represent the 90% confidence intervals
around point estimates. Standard errors are clustered at the country level.

44



Figure A5. Sector-specific impact of annual temperature and precipitation changes

Notes: The figure shows the OLS coefficients associated with the response of sectoral GVA per capita
growth rate to changes in the annual sum of average daily temperature. The regression controls for
lagged sectoral GVA growth rate, country-sector, sector-year fixed effects. Bins represent the 90%
confidence intervals around point estimates. Standard errors are clustered at the country level.
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Figure A6. Heterogeneity in the GVA response to heat shocks

(a) Value Added terciles

(b) Climate terciles

Notes: The figure shows the (standardized) coefficients associated with the response of sectoral GVA
per capita growth rate to heat shocks (defined as the number of days above the 95th percentile) by
income terciles of average sectoral value addded and climate terciles of long-run average temperature.
All sector-specific coefficients are estimated jointly in a stacked regression model fully saturated
with country-sector and sector-year fixed effects. Bins represent the 90% confidence intervals with
standard errors clustered at the country-level.
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Figure A7. Abnormal weather realizations using 1st and 99th percentiles

(a) Hot and cold temperature shocks (b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the country-average number of
days above the 99th and below the 1st percentile of the daily distribution in temperature (Panel (a))
and in precipitation (Panel (b)). All sector-specific coefficients are estimated jointly in a stacked
regression model fully saturated with country-sector and sector-year fixed effects. Bins represent
the 90% confidence intervals with standard errors clustered at the country-level.

Figure A8. Abnormal weather realizations using 10th and 90th percentiles

(a) Hot and cold temperature shocks (b) Wet and dry precipitation shocks

Notes: The figure shows the (standardized) regression estimates for the country-average number of
days above the 90th and below the 10th percentile of the daily distribution in temperature (Panel
(a)) and in precipitation (Panel (b)). All sector-specific coefficients are estimated jointly in a stacked
regression model fully saturated with country-sector and sector-year fixed effects. Bins represent
the 90% confidence intervals with standard errors clustered at the country-level.
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Figure A9. Robustness: Abnormal temperature realizations

(a) Balanced panel (b) Excluding “large” countries

(c) Heat shocks - Additional controls and FE

Notes: The figure shows the (standardized) regression estimates for the country-average number of
days above the 95th and below the 5th percentile of the daily distribution in temperature using a
sector-country balanced panel (Panel (a)), excluding large countries (Brazil, China, India, Russia,
US) (Panel (b)), and for days above the 95th percentile including lagged growth rate, country-
specific linear and quadratic trends and subregion-by-year fixed effects (Panel (c)). All sector-specific
coefficients are estimated jointly in a stacked regression model fully saturated with country-sector
and sector-year fixed effects. Bins represent the 90% confidence intervals around point estimates.
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Figure A10. Abnormal weather realizations from time-varying climate norms using
5th and 95th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the number of days above the
90th and below the 10th percentile of the daily distribution in temperature (Panels (a-c-e)) and in
precipitation (Panels (b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and 40-
year). The estimation sample starts from 1990. All sector-specific coefficients are estimated jointly
in a stacked regression model fully saturated with country-sector and sector-year fixed effects. Bins
represent the 90% confidence intervals with standard errors clustered at the country-level.
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Figure A11. Abnormal weather realizations from time-varying climate norms using
10th and 90th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the number of days above the
90th and below the 10th percentile of the daily distribution in temperature (Panels (a-c-e)) and in
precipitation (Panels (b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and 40-
year). The estimation sample starts from 1990. All sector-specific coefficients are estimated jointly
in a stacked regression model fully saturated with country-sector and sector-year fixed effects. Bins
represent the 90% confidence intervals with standard errors clustered at the country-level.
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Figure A12. Abnormal weather realizations from time-varying climate norms using
1st and 99th percentiles

(a) Temperature - 20-year (b) Precipitation - 20-year

(c) Temperature - 30-year (d) Precipitation - 30-year

(e) Temperature - 40-year (f) Precipitation - 40-year

Notes: The figure shows the (standardized) regression coefficients on the number of days above the
99th and below the 1st percentile of the daily distribution in temperature (Panels (a-c-e)) and in
precipitation (Panels (b-d-f)) using time-varying distributions (respectively, 20-year, 30-year and 40-
year). The estimation sample starts from 1990. All sector-specific coefficients are estimated jointly
in a stacked regression model fully saturated with country-sector and sector-year fixed effects. Bins
represent the 90% confidence intervals with standard errors clustered at the country-level.
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Figure A13. Robustness: Alternative specifications

(a) Region-by-year FE (b) Continent-by-year FE

(c) Country-specific linear trends

Notes: The figure shows the (standardized) sector-specific coefficients associated with direct shocks
and domestic and foreign shocks, using the average number of days above the 95th percentile of
the daily temperature distribution. All sector-specific coefficients are estimated jointly in a stacked
regression model fully saturated with country-sector and sector-year fixed effects and accounting
for sector-specific responses to temperature realizations below the 5th percentile and sector-specific
responses to precipitation realizations below the 5th and above the 95th percentile. Panel (a) accounts
for region-by-year fixed effects, Panel (b) accounts for continent-by-year fixed effects, Panel (c)
accounts for country-specific linear trends. Bins represent the 90% confidence intervals.
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Figure A14. Robustness: Domestic and foreign heat shocks

(a) Balanced panel (b) Excluding “large” countries

(c) Using 90th percentile (d) Using 99th percentile

(e) Time-invariant production network (f) 30-y MA climate norm

Notes: The figure shows the (standardized) sector-specific coefficients associated with direct shocks
and domestic and foreign agricultural heat shocks, Panel (a) shows the estimates controlling for
sector-year FE interacted with the sum of exposure shares. Panel (b) uses sector-country balanced
panel, Panel (c) excludes large countries (Brazil, China, India, Russia, US), Panel (d) and panel
(e) respectively used the 90th and the 99th percentile to construct heat shocks. Panel (f) uses a
time-invariant production network constructed using the average of the first available five years of
input-output interlinkages. Bins represent the 90% confidence intervals around point estimates.

53



Figure A15. Domestic and foreign agricultural heat shocks on other sectors’ produc-
tion

Notes: Bars represent the (standardized) sector-specific coefficients associated with direct shocks
and domestic and foreign shocks, using the average number of days above the 95th percentile of
the daily temperature distribution. Domestic shocks are constructed as the average heat shock in
agriculture in the same country as the sector of interest weighted by the average of upstream and
downstream interdependence with each sector. Symmetrically, foreign shocks are constructed as the
average weather shock in agriculture in all the other countries weighted by the average of upstream
and downstream interdependence with each sector. All sector-specific coefficients are estimated
jointly in a stacked regression model fully saturated with country-sector and sector-year fixed effects
and accounting for sector-specific responses to temperature realizations below the 5th percentile and
sector-specific responses to precipitation realizations below the 5th and above the 95th percentile.
Bins represent the 95% confidence intervals with standard errors clustered at the country-level.
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Figure A16. Agricultural heat shocks robustness: Alternative specifications

(a) Region-by-year FE (b) Continent-by-year FE

(c) Country-specific linear trends

Notes: The figure shows the (standardized) sector-specific coefficients associated with local shocks
and domestic and foreign agricultural heat shocks, using the average number of days above the
95th percentile of the daily temperature distribution. All sector-specific coefficients are estimated
jointly in a stacked regression model fully saturated with country-sector and sector-year fixed effects
and accounting for sector-specific responses to temperature realizations below the 5th percentile and
sector-specific responses to precipitation realizations below the 5th and above the 95th percentile.
Panel (a) accounts for region-by-year fixed effects, Panel (b) accounts for continent-by-year fixed
effects, Panel (c) accounts for country-specific linear trends. Bins represent the 90% confidence
intervals.
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Figure A17. Local projections of domestic and foreign heat shocks on total value
added

(a) Domestic heat shock (b) Foreign heat shock

Notes: Panels show the impulse response function of per capita total value added growth rate to a 1
SD increase in heat shocks estimated in a stacked regression model with country and year fixed effects
and accounting for cold temperature shocks (below the 5th percentile) and precipitation realizations
below the 5th and above the 95th percentile. Horizon 0 is the year of the shock. Shaded areas
represent the 90% confidence intervals with standard errors clustered at the country level. Panel (a)
shows the estimates for domestic shocks, and Panel (b) shows the estimates for foreign shocks.
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Figure A18. Local projections of local heat shocks on sectoral value added

Notes: Panels show the sector-specific impulse response function of sectoral per capita GVA growth
rate to a 1 SD increase in heat shocks estimated in a stacked regression model fully saturated with
country-sector and sector-year fixed effects and accounting for sector-specific responses to domestic
and foreign heat shocks, cold shocks (below the 5th percentile) and to precipitation realizations below
the 5th and above the 95th percentile. Horizon 0 is the year of the shock. Shaded areas represent
the 90% confidence intervals with standard errors clustered at the country-level.
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Figure A19. Local projections of domestic and foreign agricultural heat shocks on
sectoral production. Continent-sector-year FE.

Notes: Panels show the sector-specific impulse response function of sectoral per capita GVA growth
rate to a 1 SD increase in domestic and foreign agricultural heat shocks estimated in a stacked
regression model fully saturated with country-sector and continent-sector-year fixed effects and ac-
counting for sector-specific responses to cold temperature shocks (below the 5th percentile) and to
precipitation realizations below the 5th and above the 95th percentile. Horizon 0 is the year of the
shock. Shaded areas represent the 90% confidence intervals with standard errors clustered at the
country-level.
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Figure A20. Local projections of domestic and foreign agricultural heat shocks on
sectoral production. Continent-sector linear trends.

Notes: Panels show the sector-specific impulse response function of sectoral per capita GVA growth
rate to a 1 SD increase in domestic and foreign agricultural heat shocks estimated in a stacked
regression model fully saturated with country-sector and continent-sector linear annual trends and
accounting for sector-specific responses to cold temperature shocks (below the 5th percentile) and to
precipitation realizations below the 5th and above the 95th percentile. Horizon 0 is the year of the
shock. Shaded areas represent the 90% confidence intervals with standard errors clustered at the
country-level.
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Figure A21. Average annual relative sectoral GVA pc losses (%) due to recent warm-
ing

(a) Local sectoral direct shocks (b) Accounting for indirect shocks

Notes: The figure shows average annual losses (in red) and gains (in blue) in sectoral per capita
GVA due to heat and cold temperature shocks in the 2001-2020 period compared to a counterfac-
tual in which shocks evolved linearly from their 1970-2000 averages. The two panels compare the
average annual relative loss (% of per capita GVA) using sector-specific local heat and cold shock
estimates (Panel a) and accounting for semi-elasticities to shocks in other partner sectors (Panel
b). Averages are obtained from 1000 bootstrap estimations of Equation (12), where indirect shocks
are constructed with a time-varying production network that uses the first five-year average input-
output interlinkages for each decade. In Panel a), only estimates for Agriculture are statistically
significant at 95% level. Table A8 reports the estimated average losses significant at the 95% level
for each country-sector when including indirect heat and cold shocks. Summary statistics on direct
losses only considering 95% significant estimates: mean is 1.08%, median is 1.09%, IQR is [1.00%,
1.18%]. Summary statistics on losses accounting for indirect shocks only considering 95% significant
estimates: mean is 1.29%, median is 1.21%, IQR is [1.04%, 1.44%].
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B Additional tables

Table A1. Summary statistics on sectoral GVA growth rate

N mean SD min max

Log GVA per capita 47,289 6.166 1.789 -2.880 11.534
GVA per capita growth rate 47,289 0.014 0.121 -3.299 2.572

Sector
Agriculture, hunting, forestry, fishing (ISIC A-B) 7,860 0.002 0.104 -1.691 0.745
Mining, Manufacturing, Utilities (ISIC C-E) 7,900 0.013 0.170 -3.299 2.572
Construction (ISIC F) 7,906 0.010 0.128 -3.169 2.430
Wholesale, retail trade, restaurants and hotels (ISIC G-H) 7,906 0.018 0.087 -1.513 1.261
Transport, storage and communication (ISIC I) 7,857 0.026 0.112 -2.514 2.030
Other Activities (ISIC J-P) 7,860 0.015 0.110 -1.639 1.502

Number of countries 183
Number of sectors 6
Number of years per country-sector 44.220 5.235 12 46
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Table A2. Countries and year-sectors in final sample
Country Number of years-sectors Country Number of years-sectors Country Number of years-sectors
Afghanistan 276 French Polynesia 276 Nigeria 276
Albania 276 Gabon 276 North Korea 184
Algeria 276 Gambia 276 North Macedonia 180
Andorra 276 Georgia 180 Norway 276
Angola 276 Germany 276 Oman 276
Antigua and Barbuda 276 Ghana 276 Pakistan 276
Argentina 276 Greece 276 Palestine 180
Armenia 180 Greenland 276 Panama 276
Aruba 276 Grenada 276 Papua New Guinea 276
Australia 276 Guatemala 276 Paraguay 276
Austria 276 Guinea 276 Peru 276
Azerbaijan 180 Guyana 276 Philippines 276
Bahamas 296 Haiti 276 Poland 276
Bahrain 276 Honduras 276 Portugal 276
Bangladesh 276 Hungary 276 Qatar 276
Barbados 276 Iceland 276 Republic of the Congo 276
Belarus 180 India 276 Romania 276
Belgium 276 Indonesia 276 Russia 180
Belize 276 Iran 276 Rwanda 276
Benin 276 Iraq 276 Samoa 276
Bermuda 276 Ireland 276 San Marino 276
Bhutan 276 Israel 276 Saudi Arabia 276
Bolivia 276 Italy 276 Senegal 276
Bosnia and Herzegovina 180 Jamaica 276 Serbia 180
Botswana 276 Japan 276 Seychelles 276
Brazil 276 Jordan 276 Sierra Leone 276
British Virgin Islands 276 Kazakhstan 180 Singapore 276
Brunei 276 Kenya 276 Slovakia 180
Bulgaria 276 Kuwait 276 Slovenia 180
Burkina Faso 276 Kyrgyzstan 180 Somalia 276
Burundi 276 Laos 276 South Africa 276
Cabo Verde 276 Latvia 180 South Korea 276
Cambodia 276 Lebanon 276 South Sudan 72
Cameroon 276 Lesotho 276 Spain 276
Canada 276 Liberia 276 Sri Lanka 276
Cayman Islands 276 Libya 276 Sudan 72
Central African Republic 276 Liechtenstein 276 Suriname 276
Chad 276 Lithuania 180 Swaziland 276
Chile 276 Luxembourg 276 Sweden 276
China 276 Madagascar 276 Switzerland 276
Colombia 276 Malawi 276 Syria 276
Comoros 276 Malaysia 276 São Tomé and Pŕıncipe 276
Costa Rica 276 Maldives 297 Tajikistan 178
Croatia 180 Mali 276 Tanzania 276
Cuba 276 Malta 276 Thailand 276
Cyprus 276 Mauritania 276 Togo 276
Czechia 180 Mauritius 276 Trinidad and Tobago 276
Côte d’Ivoire 276 Moldova 180 Tunisia 276
Democratic Republic of the Congo 276 Monaco 230 Turkey 276
Denmark 276 Mongolia 276 Turkmenistan 180
Djibouti 276 Montenegro 180 Uganda 276
Dominican Republic 276 Morocco 276 Ukraine 180
Ecuador 276 Mozambique 276 United Arab Emirates 276
Egypt 276 Myanmar 276 United Kingdom 276
El Salvador 276 México 276 United States 276
Equatorial Guinea 276 Namibia 276 Uruguay 276
Eritrea 126 Nepal 276 Uzbekistan 180
Estonia 180 Netherlands 276 Vanuatu 276
Ethiopia 180 New Caledonia 276 Venezuela 276
Fiji 276 New Zealand 276 Vietnam 276
Finland 276 Nicaragua 276 Yemen 186
France 276 Niger 276 Zambia 276

Zimbabwe 276

Total 47,289
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Table A3. Mapping between EORA26 sectors and UNSD industries

EORA26 Sector UNSD industry
Agriculture Agriculture, hunting, forestry, fishing (ISIC A-B)
Fishing Agriculture, hunting, forestry, fishing (ISIC A-B)
Mining and Quarrying Mining, Manufacturing, Utilities (ISIC C-E)
Electricity, Gas and Water Mining, Manufacturing, Utilities (ISIC C-E)
Food & Beverages Mining, Manufacturing, Utilities (ISIC C-E)
Textiles and Wearing Apparel Mining, Manufacturing, Utilities (ISIC C-E)
Wood and Paper Mining, Manufacturing, Utilities (ISIC C-E)
Petroleum, Chemical and Non-Metallic Mineral Products Mining, Manufacturing, Utilities (ISIC C-E)
Metal Products Mining, Manufacturing, Utilities (ISIC C-E)
Electrical and Machinery Mining, Manufacturing, Utilities (ISIC C-E)
Transport Equipment Mining, Manufacturing, Utilities (ISIC C-E)
Other Manufacturing Mining, Manufacturing, Utilities (ISIC C-E)
Recycling Mining, Manufacturing, Utilities (ISIC C-E)
Construction Construction (ISIC F)
Maintenance and Repair Construction (ISIC F)
Wholesale Trade Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Retail Trade Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Hotels and Restaurants Wholesale, retail trade, restaurants and hotels (ISIC G-H)
Transport Transport, storage and communication (ISIC I)
Post and Telecommunications Transport, storage and communication (ISIC I)
Financial Intermediation and Business Activities Other Activities (ISIC J-P)
Public Administration Other Activities (ISIC J-P)
Education, Health and Other Services Other Activities (ISIC J-P)
Private Households Other Activities (ISIC J-P)
Others Other Activities (ISIC J-P)
Re-export & Re-import Other Activities (ISIC J-P)

Notes: Author’s classification based on Kunze (2021) and adapted to six UNSD sectors.
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Table A4. Im-Pesaran-Shin unit-root test for main variables

Statistic p-value

GVA growth rate -6.072 0.000
Abnormally dry precipitation shock (p1) -6.782 0.000
Abnormally dry precipitation shock (p5) -6.464 0.000
Abnormally dry precipitation shock (p10) -6.456 0.000
Abnormally wet precipitation shock (p90) -6.571 0.000
Abnormally wet precipitation shock (p95) -6.600 0.000
Abnormally wet precipitation shock (p99) -6.832 0.000
Abnormally cold temperature shock (p1) -6.541 0.000
Abnormally cold temperature shock (p5) -6.134 0.000
Abnormally cold temperature shock (p10) -6.128 0.000
Abnormally hot temperature shock (p90) -6.156 0.000
Abnormally hot temperature shock (p95) -6.258 0.000
Abnormally hot temperature shock (p99) -6.575 0.000

Notes: Null hypothesis of the unit-root test by Im et al. (2003) is that
all panels contain unit roots against the alternative hypothesis that some
panels are stationary. In performing the test, I do not include lags and
remove cross-sectional means and include a time trend in the estimated
equation. The test on the growth rate is performed on a balanced sector-
country-year panel, whereas test on weather variables is performed on a
balanced country-year panel using population-weighted weather variables.
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Table A5. Summary statistics on temperature and precipitation variables

N mean SD min max

Temperature and precipitation
Positive difference in daily temperature sum {0;1} 8,572 0.524 0.499 0 1
Positive difference in daily precipitation sum {0;1} 8,572 0.497 0.500 0 1

Changes in daily temperature sum (∆◦C) 8,572 9.556 197.755 -1594.597 1704.612
Changes in daily precipitation sum (∆ m) 8,572 0.0008 0.010 -0.092 0.095

Temperature above 95th percentile (days/year) 8,572 18.986 16.5 0 152
Temperature below 5th percentile (days/year) 8,572 17.870 14.185 0 156
Precipitation above 95th percentile (days/year) 8,572 18.244 6.613 1 78
Precipitation below 5th percentile (days/year) 8,572 15.633 10.182 0 86

Temperature above 90th percentile (days/year) 8,548 37.487 23.610 0 222
Temperature below 10th percentile (days/year) 8,548 35.907 21.023 0 210
Precipitation above 90th percentile (days/year) 8,548 36.458 9.907 7 111
Precipitation below 10th percentile (days/year) 8,548 32.390 16.367 0 114

Temperature above 99th percentile (days/year) 8,548 3.851 6.145 0 94
Temperature below 1th percentile (days/year) 8,548 3.563 4.892 0 54
Precipitation above 99th percentile (days/year) 8,548 3.659 2.539 0 29
Precipitation below 1th percentile (days/year) 8,548 2.474 3.187 0 32

Notes: Summary statistics are computed using country-year observations. Where ∆ is indicated in parentheses, variables
are in first-difference, measuring changes in weather conditions from the previous year.
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Table A6. Annual (binary) changes in temperature and precipitation on sectoral
GVA.

GVA per capita growth rate

(1) (2) (3)
Temperature
Agriculture, hunting, forestry, fishing -0.00676∗∗ -0.00726∗∗ -0.00773∗∗

(0.00297) (0.00305) (0.00300)

Construction 0.000787 0.000861 0.000352
(0.00401) (0.00403) (0.00403)

Mining, Manufacturing, Utilities 0.00229 0.00205 0.00162
(0.00251) (0.00253) (0.00256)

Other Activities 0.000665 0.000697 0.000157
(0.00183) (0.00184) (0.00183)

Transport, storage and communication 0.00410 0.00423 0.00370
(0.00266) (0.00271) (0.00272)

Wholesale, retail trade, restaurants and hotels 0.00284 0.00266 0.00220
(0.00260) (0.00264) (0.00266)

Precipitation
Agriculture, hunting, forestry, fishing 0.0117∗∗∗ 0.0122∗∗∗ 0.0117∗∗∗

(0.00291) (0.00299) (0.00293)

Construction -0.00378 -0.00349 -0.00380
(0.00337) (0.00331) (0.00332)

Mining, Manufacturing, Utilities -0.000347 0.000191 -0.000257
(0.00278) (0.00285) (0.00285)

Other Activities -0.000128 -0.00000690 -0.000466
(0.00171) (0.00177) (0.00175)

Transport, storage and communication -0.00514∗∗ -0.00460∗ -0.00505∗∗

(0.00233) (0.00240) (0.00238)

Wholesale, retail trade, restaurants and hotels -0.000100 0.000159 -0.000298
(0.00209) (0.00212) (0.00213)

GVA growth ratet−1 0.0618∗∗ 0.0399
(0.0264) (0.0257)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 51273 50162 50162
adj. R2 0.043 0.046 0.060

Notes: The table reports the sector-specific coefficients associated with a binary variable equal to one
if the annual temperature (resp. precipitation) is higher than the previous year. Standard errors are
clustered at the country level. A graphical representation of the coefficients in column (2) is reported in
Figure A4. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A7. Annual changes in temperature and precipitation on sectoral GVA.

GVA per capita growth rate

(1) (2) (3)
Temperature Changes
Agriculture, hunting, forestry, fishing -0.0351∗∗ -0.0383∗∗ -0.0379∗∗

(0.0144) (0.0149) (0.0149)

Construction 0.0402∗∗∗ 0.0360∗∗ 0.0362∗∗

(0.0153) (0.0157) (0.0155)

Mining, Manufacturing, Utilities 0.0220∗ 0.0189 0.0193
(0.0112) (0.0119) (0.0118)

Other Activities 0.00974 0.00980 0.0101
(0.00950) (0.00978) (0.00973)

Transport, storage and communication 0.0230∗ 0.0200 0.0205
(0.0124) (0.0127) (0.0126)

Wholesale, retail trade, restaurants and hotels 0.0217 0.0197 0.0201
(0.0135) (0.0137) (0.0137)

Precipitation Changes
Agriculture, hunting, forestry, fishing 0.0405∗∗∗ 0.0417∗∗∗ 0.0409∗∗∗

(0.0114) (0.0119) (0.0117)

Construction -0.00187 0.00110 0.000722
(0.0129) (0.0129) (0.0129)

Mining, Manufacturing, Utilities 0.0130 0.0148 0.0147
(0.0103) (0.0106) (0.0106)

Other Activities 0.00275 0.00302 0.00277
(0.00532) (0.00549) (0.00545)

Transport, storage and communication -0.00857 -0.00713 -0.00744
(0.00821) (0.00867) (0.00851)

Wholesale, retail trade, restaurants and hotels -0.00305 -0.00207 -0.00255
(0.00839) (0.00846) (0.00836)

GVA growth ratet−1 0.0616∗∗ 0.0400
(0.0264) (0.0257)

Country-Sector FE ✓ ✓ ✓
Sector-Year FE ✓ ✓ ✓
Country linear time trends ✓
Country quadratic time trends ✓

N 50223 49133 49133
adj. R2 0.044 0.047 0.060

Notes: The table reports the (standardized) sector-specific coefficients associated with changes in
annual temperature and precipitation distributions from the previous year’s. Standard errors are
clustered at the country-level. A graphical representation of the coefficients in column (2) is reported
in Figure A5. Significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A8. Sector-country damages (% loss GVA per capita) significant at 95% level
Country Sector Average loss 95% CI Country Sector Average loss 95% CI Country Sector Average loss 95% CI
Afghanistan Agriculture 1,25 [ 0,74 ; 1,78 ] Japan Agriculture 0,82 [ 0,40 ; 1,26 ] Ukraine Agriculture 1,21 [ 0,58 ; 1,86 ]
Albania Agriculture 1,39 [ 0,81 ; 1,97 ] Jordan Agriculture 1,12 [ 0,53 ; 1,73 ] Uruguay Agriculture 1,39 [ 0,77 ; 2,02 ]
Algeria Agriculture 1,37 [ 0,81 ; 1,96 ] Kenya Agriculture 0,99 [ 0,41 ; 1,58 ] Uzbekistan Agriculture 1,81 [ 0,71 ; 2,84 ]
Andorra Agriculture 1,35 [ 0,80 ; 1,94 ] Kuwait Agriculture 1,11 [ 0,53 ; 1,71 ] Vanuatu Agriculture 1,35 [ 0,81 ; 1,93 ]
Angola Agriculture 1,74 [ 0,99 ; 2,50 ] Kyrgyzstan Agriculture 0,91 [ 0,43 ; 1,41 ] Venezuela Agriculture 1,85 [ 0,94 ; 2,75 ]
Antigua Agriculture 1,62 [ 0,93 ; 2,32 ] Laos Agriculture 1,12 [ 0,54 ; 1,72 ] Viet Nam Agriculture 2,03 [ 0,93 ; 3,12 ]
Argentina Agriculture 1,30 [ 0,76 ; 1,88 ] Latvia Agriculture 1,03 [ 0,49 ; 1,59 ] Yemen Agriculture 1,53 [ 0,81 ; 2,24 ]
Armenia Agriculture 1,19 [ 0,67 ; 1,72 ] Lebanon Agriculture 1,13 [ 0,54 ; 1,73 ] Zambia Agriculture 1,34 [ 0,79 ; 1,91 ]
Aruba Agriculture 1,31 [ 0,68 ; 1,95 ] Lesotho Agriculture 1,09 [ 0,52 ; 1,68 ] Zimbabwe Agriculture 1,17 [ 0,68 ; 1,68 ]
Australia Agriculture 1,27 [ 0,75 ; 1,82 ] Liberia Agriculture 1,03 [ 0,49 ; 1,59 ] Afghanistan Construction 1,65 [ 0,26 ; 2,97 ]
Austria Agriculture 1,33 [ 0,79 ; 1,92 ] Libya Agriculture 1,07 [ 0,51 ; 1,63 ] Albania Construction 1,59 [ 0,07 ; 3,04 ]
Azerbaijan Agriculture 1,11 [ 0,61 ; 1,61 ] Liechtenstein Agriculture 1,08 [ 0,52 ; 1,66 ] Angola Construction 2,30 [ 0,61 ; 3,77 ]
Bahamas Agriculture 1,70 [ 1,00 ; 2,45 ] Lithuania Agriculture 1,06 [ 0,50 ; 1,64 ] Antigua Construction 1,49 [ 0,13 ; 2,74 ]
Bahrain Agriculture 1,45 [ 0,85 ; 2,09 ] Luxembourg Agriculture 1,00 [ 0,47 ; 1,55 ] Armenia Construction 2,08 [ 0,53 ; 3,52 ]
Bangladesh Agriculture 1,28 [ 0,74 ; 1,84 ] Madagascar Agriculture 1,26 [ 0,56 ; 1,94 ] Aruba Construction 3,69 [ 1,44 ; 5,73 ]
Barbados Agriculture 1,71 [ 0,96 ; 2,46 ] Malawi Agriculture 1,06 [ 0,52 ; 1,62 ] Austria Construction 1,70 [ 0,26 ; 3,07 ]
Belarus Agriculture 1,20 [ 0,64 ; 1,78 ] Malaysia Agriculture 1,16 [ 0,47 ; 1,86 ] Azerbaijan Construction 1,32 [ 0,08 ; 2,51 ]
Belgium Agriculture 1,20 [ 0,71 ; 1,71 ] Maldives Agriculture 1,01 [ 0,43 ; 1,60 ] Bahrain Construction 1,98 [ 0,46 ; 3,39 ]
Belize Agriculture 1,69 [ 1,00 ; 2,41 ] Mali Agriculture 1,09 [ 0,52 ; 1,68 ] Bangladesh Construction 1,49 [ 0,09 ; 2,83 ]
Benin Agriculture 1,34 [ 0,78 ; 1,91 ] Malta Agriculture -0,11 [ -0,18 ; -0,04 ] Barbados Construction 1,92 [ 0,38 ; 3,25 ]
Bermuda Agriculture 1,58 [ 0,91 ; 2,28 ] Mauritania Agriculture 1,03 [ 0,50 ; 1,58 ] Belgium Construction 1,25 [ 0,02 ; 2,41 ]
Bhutan Agriculture 1,63 [ 0,94 ; 2,34 ] Mauritius Agriculture 0,96 [ 0,36 ; 1,55 ] Benin Construction 1,77 [ 0,43 ; 2,94 ]
Bolivia Agriculture 1,78 [ 1,01 ; 2,56 ] Mexico Agriculture 1,17 [ 0,56 ; 1,80 ] Bhutan Construction 2,67 [ 0,79 ; 4,41 ]
Bosnia and Herzegovina Agriculture 1,43 [ 0,85 ; 2,05 ] Moldova Agriculture 1,23 [ 0,59 ; 1,88 ] Bosnia and Herzegovina Construction 1,38 [ 0,04 ; 2,67 ]
Botswana Agriculture 1,30 [ 0,77 ; 1,87 ] Mongolia Agriculture 1,21 [ 0,57 ; 1,86 ] Brazil Construction 1,39 [ 0,07 ; 2,63 ]
Brazil Agriculture 1,66 [ 0,95 ; 2,39 ] Montenegro Agriculture 1,22 [ 0,58 ; 1,86 ] Brunei Construction 2,16 [ 0,62 ; 3,50 ]
British Virgin Islands Agriculture 1,62 [ 0,95 ; 2,31 ] Morocco Agriculture 1,01 [ 0,48 ; 1,55 ] Bulgaria Construction 1,43 [ 0,02 ; 2,77 ]
Brunei Agriculture 1,57 [ 0,90 ; 2,26 ] Mozambique Agriculture 1,04 [ 0,50 ; 1,61 ] Burundi Construction 1,47 [ 0,22 ; 2,58 ]
Bulgaria Agriculture 1,27 [ 0,69 ; 1,88 ] Myanmar Agriculture 0,62 [ 0,29 ; 0,96 ] Cambodia Construction 1,61 [ 0,33 ; 2,74 ]
Burkina Faso Agriculture 1,25 [ 0,70 ; 1,80 ] Namibia Agriculture 1,16 [ 0,55 ; 1,79 ] Cameroon Construction 2,02 [ 0,51 ; 3,32 ]
Burundi Agriculture 1,39 [ 0,80 ; 2,00 ] Nepal Agriculture 0,98 [ 0,46 ; 1,52 ] Cape Verde Construction 1,44 [ 0,07 ; 2,73 ]
Cambodia Agriculture 1,21 [ 0,71 ; 1,72 ] Netherlands Agriculture 1,00 [ 0,48 ; 1,53 ] Cayman Islands Construction 1,76 [ 0,19 ; 3,25 ]
Cameroon Agriculture 1,39 [ 0,79 ; 2,00 ] New Caledonia Agriculture 1,03 [ 0,50 ; 1,58 ] Central African Republic Construction 1,54 [ 0,24 ; 2,66 ]
Canada Agriculture 1,00 [ 0,58 ; 1,45 ] New Zealand Agriculture 0,89 [ 0,41 ; 1,38 ] Chad Construction 1,45 [ 0,03 ; 2,81 ]
Cape Verde Agriculture 1,65 [ 0,94 ; 2,37 ] Nicaragua Agriculture 0,91 [ 0,40 ; 1,41 ] Colombia Construction 1,60 [ 0,16 ; 2,88 ]
Cayman Islands Agriculture 1,75 [ 1,01 ; 2,51 ] Niger Agriculture 1,12 [ 0,54 ; 1,72 ] Congo Construction 2,14 [ 0,56 ; 3,52 ]
Central African Republic Agriculture 1,45 [ 0,86 ; 2,06 ] Nigeria Agriculture 1,18 [ 0,56 ; 1,81 ] Costa Rica Construction 1,31 [ 0,17 ; 2,38 ]
Chad Agriculture 1,52 [ 0,87 ; 2,20 ] North Korea Agriculture 0,53 [ 0,19 ; 0,87 ] France Construction 1,28 [ 0,01 ; 2,50 ]
Chile Agriculture 1,30 [ 0,76 ; 1,86 ] Norway Agriculture 0,91 [ 0,43 ; 1,39 ] French Polynesia Construction 1,61 [ 0,29 ; 2,81 ]
China Agriculture 0,84 [ 0,44 ; 1,26 ] Oman Agriculture 1,23 [ 0,56 ; 1,90 ] Gabon Construction 2,17 [ 0,64 ; 3,55 ]
Colombia Agriculture 1,60 [ 0,87 ; 2,34 ] Pakistan Agriculture 0,86 [ 0,40 ; 1,32 ] Gambia Construction 1,37 [ 0,10 ; 2,60 ]
Congo Agriculture 1,50 [ 0,85 ; 2,17 ] Panama Agriculture 1,00 [ 0,43 ; 1,59 ] Russia Construction 1,40 [ 0,07 ; 2,67 ]
Costa Rica Agriculture 0,89 [ 0,45 ; 1,32 ] Papua New Guinea Agriculture 1,35 [ 0,57 ; 2,12 ] Rwanda Construction 2,20 [ 0,60 ; 3,58 ]
Cote dIvoire Agriculture 1,01 [ 0,43 ; 1,58 ] Paraguay Agriculture 1,07 [ 0,50 ; 1,64 ] Saudi Arabia Construction 2,15 [ 0,44 ; 3,65 ]
Croatia Agriculture 1,15 [ 0,55 ; 1,76 ] Peru Agriculture 0,92 [ 0,39 ; 1,45 ] Senegal Construction 1,17 [ 0,03 ; 2,27 ]
Cuba Agriculture 1,24 [ 0,60 ; 1,90 ] Philippines Agriculture 1,14 [ 0,48 ; 1,81 ] Serbia Construction 1,42 [ 0,06 ; 2,72 ]
Cyprus Agriculture 1,09 [ 0,52 ; 1,68 ] Poland Agriculture 1,13 [ 0,54 ; 1,73 ] Slovakia Construction 1,45 [ 0,07 ; 2,77 ]
Czech Republic Agriculture 1,09 [ 0,52 ; 1,67 ] Portugal Agriculture 1,00 [ 0,47 ; 1,55 ] Slovenia Construction 2,01 [ 0,43 ; 3,48 ]
DR Congo Agriculture 1,18 [ 0,50 ; 1,88 ] Qatar Agriculture 1,19 [ 0,56 ; 1,84 ] Somalia Construction 1,57 [ 0,17 ; 2,92 ]
Denmark Agriculture 1,01 [ 0,48 ; 1,54 ] Romania Agriculture 1,44 [ 0,86 ; 2,07 ] Spain Construction 2,00 [ 0,14 ; 3,72 ]
Djibouti Agriculture 1,14 [ 0,54 ; 1,74 ] Russia Agriculture 1,38 [ 0,82 ; 1,99 ] Venezuela Construction 2,02 [ 0,46 ; 3,37 ]
Dominican Republic Agriculture 1,22 [ 0,54 ; 1,88 ] Rwanda Agriculture 1,75 [ 0,95 ; 2,53 ] Aruba Mining, manufacturing, utilities 1,62 [ 0,55 ; 3,38 ]
Ecuador Agriculture 1,29 [ 0,56 ; 2,01 ] San Marino Agriculture 1,41 [ 0,83 ; 2,03 ] Colombia Mining, manufacturing, utilities 2,30 [ 0,89 ; 4,62 ]
Egypt Agriculture 1,21 [ 0,55 ; 1,86 ] Sao Tome and Principe Agriculture 1,10 [ 0,66 ; 1,58 ] Spain Mining, manufacturing, utilities 1,09 [ 0,09 ; 2,34 ]
El Salvador Agriculture 1,17 [ 0,56 ; 1,80 ] Saudi Arabia Agriculture 1,82 [ 1,04 ; 2,63 ] Aruba Other activities 1,32 [ 0,27 ; 2,48 ]
Eritrea Agriculture 1,15 [ 0,55 ; 1,76 ] Senegal Agriculture 1,16 [ 0,69 ; 1,67 ] Australia Other activities 0,57 [ 0,05 ; 1,09 ]
Estonia Agriculture 0,99 [ 0,47 ; 1,52 ] Serbia Agriculture 1,25 [ 0,71 ; 1,80 ] Bermuda Other activities 0,72 [ 0,10 ; 1,37 ]
Ethiopia Agriculture 1,09 [ 0,46 ; 1,72 ] Seychelles Agriculture 1,43 [ 0,82 ; 2,06 ] Cayman Islands Other activities 0,73 [ 0,07 ; 1,42 ]
Fiji Agriculture 1,16 [ 0,56 ; 1,78 ] Sierra Leone Agriculture 1,17 [ 0,69 ; 1,68 ] Colombia Other activities 1,36 [ 0,22 ; 2,60 ]
Finland Agriculture 0,94 [ 0,44 ; 1,45 ] Singapore Agriculture 1,23 [ 0,55 ; 1,90 ] France Other activities 0,56 [ 0,04 ; 1,06 ]
France Agriculture 1,31 [ 0,77 ; 1,87 ] Slovakia Agriculture 1,33 [ 0,77 ; 1,89 ] Germany Other activities 0,57 [ 0,08 ; 1,14 ]
French Polynesia Agriculture 1,38 [ 0,81 ; 1,97 ] Slovenia Agriculture 1,40 [ 0,83 ; 2,01 ] Spain Other activities 1,48 [ 0,77 ; 2,65 ]
Gabon Agriculture 1,28 [ 0,60 ; 1,95 ] Somalia Agriculture 1,47 [ 0,82 ; 2,13 ] Aruba Transport, storage, communications 2,02 [ 0,58 ; 3,42 ]
Gambia Agriculture 1,41 [ 0,80 ; 2,04 ] South Africa Agriculture 1,39 [ 0,83 ; 2,00 ] Australia Transport, storage, communications 0,69 [ 0,00 ; 1,35 ]
Gaza Strip Agriculture 1,22 [ 0,56 ; 1,88 ] South Korea Agriculture 0,80 [ 0,37 ; 1,24 ] Bolivia Transport, storage, communications 0,96 [ 0,03 ; 1,86 ]
Georgia Agriculture 1,14 [ 0,56 ; 1,74 ] Spain Agriculture 1,21 [ 0,41 ; 1,94 ] Russia Transport, storage, communications 0,77 [ 0,01 ; 1,49 ]
Germany Agriculture 1,05 [ 0,51 ; 1,61 ] Sri Lanka Agriculture 0,90 [ 0,43 ; 1,38 ] Singapore Transport, storage, communications 1,71 [ 0,48 ; 2,94 ]
Ghana Agriculture 1,05 [ 0,45 ; 1,65 ] Suriname Agriculture 1,05 [ 0,44 ; 1,66 ] Uzbekistan Transport, storage, communications 1,06 [ 0,22 ; 1,86 ]
Greece Agriculture 1,22 [ 0,59 ; 1,87 ] Swaziland Agriculture 0,91 [ 0,43 ; 1,40 ] Viet Nam Transport, storage, communications 0,91 [ 0,07 ; 1,73 ]
Greenland Agriculture 1,09 [ 0,47 ; 1,70 ] Sweden Agriculture 0,96 [ 0,46 ; 1,47 ] Yemen Transport, storage, communications 0,98 [ 0,03 ; 1,90 ]
Guatemala Agriculture 1,19 [ 0,55 ; 1,83 ] Switzerland Agriculture 1,10 [ 0,52 ; 1,68 ] Aruba Wholesale, retail, hotel, restaurant 4,51 [ 2,23 ; 6,90 ]
Guinea Agriculture 0,92 [ 0,43 ; 1,42 ] Syria Agriculture 1,16 [ 0,55 ; 1,79 ] Australia Wholesale, retail, hotel, restaurant 1,37 [ 0,57 ; 2,17 ]
Guyana Agriculture 1,10 [ 0,47 ; 1,75 ] TFYR Macedonia Agriculture 1,15 [ 0,55 ; 1,76 ] Bahamas Wholesale, retail, hotel, restaurant 1,19 [ 0,30 ; 2,07 ]
Haiti Agriculture 1,13 [ 0,51 ; 1,74 ] Tajikistan Agriculture 0,98 [ 0,47 ; 1,52 ] Bahrain Wholesale, retail, hotel, restaurant 0,79 [ 0,09 ; 1,47 ]
Honduras Agriculture 1,09 [ 0,52 ; 1,66 ] Tanzania Agriculture 1,29 [ 0,56 ; 2,01 ] Belgium Wholesale, retail, hotel, restaurant 0,83 [ 0,16 ; 1,49 ]
Hungary Agriculture 1,08 [ 0,51 ; 1,66 ] Thailand Agriculture 0,90 [ 0,43 ; 1,38 ] Bermuda Wholesale, retail, hotel, restaurant 0,85 [ 0,10 ; 1,58 ]
Iceland Agriculture 1,08 [ 0,47 ; 1,69 ] Togo Agriculture 0,99 [ 0,43 ; 1,55 ] Brazil Wholesale, retail, hotel, restaurant 0,81 [ 0,09 ; 1,51 ]
India Agriculture 0,93 [ 0,45 ; 1,42 ] Trinidad and Tobago Agriculture 1,24 [ 0,50 ; 1,98 ] Burkina Faso Wholesale, retail, hotel, restaurant 0,76 [ 0,07 ; 1,42 ]
Indonesia Agriculture 1,22 [ 0,44 ; 2,00 ] Tunisia Agriculture 1,12 [ 0,54 ; 1,72 ] Russia Wholesale, retail, hotel, restaurant 1,08 [ 0,33 ; 1,84 ]
Iran Agriculture 1,01 [ 0,46 ; 1,55 ] Turkey Agriculture 1,19 [ 0,57 ; 1,83 ] Saudi Arabia Wholesale, retail, hotel, restaurant 0,84 [ 0,01 ; 1,61 ]
Iraq Agriculture 0,91 [ 0,44 ; 1,40 ] Turkmenistan Agriculture 0,91 [ 0,43 ; 1,40 ] Sierra Leone Wholesale, retail, hotel, restaurant 1,92 [ 0,93 ; 2,92 ]
Ireland Agriculture 0,87 [ 0,40 ; 1,34 ] UAE Agriculture 1,24 [ 0,62 ; 1,88 ] Singapore Wholesale, retail, hotel, restaurant 1,33 [ 0,51 ; 2,14 ]
Israel Agriculture 1,22 [ 0,56 ; 1,88 ] UK Agriculture 1,01 [ 0,51 ; 1,52 ] Spain Wholesale, retail, hotel, restaurant 1,21 [ 0,29 ; 2,80 ]
Italy Agriculture 1,21 [ 0,58 ; 1,85 ] USA Agriculture 1,04 [ 0,50 ; 1,58 ] Viet Nam Wholesale, retail, hotel, restaurant 0,93 [ 0,17 ; 1,66 ]
Jamaica Agriculture 1,23 [ 0,53 ; 1,94 ] Uganda Agriculture 1,04 [ 0,44 ; 1,64 ]

Notes: The table reports the average loss for each sector as a % loss in GVA per capita relative to the observed production between 2001 and 2020, accounting for own, domestic and foreign heat and cold shocks. 95% confidence intervals are obtained from 1000 estimates from
bootstrapping Equation 12, where indirect shocks are constructed with a time-varying production network that uses the first five-year average input-output interlinkages for each decade.
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C Reduced-form approach to the climate-output

relationship

Kahn et al. (2021) review the three main approaches that study the climate-economy

relationship in reduced form in the literature (Dell et al., 2012; Burke et al., 2015;

Kalkuhl and Wenz, 2020), highlighting the restrictive assumptions that each of these

models requires to study the effect of temperature on output growth. In this Ap-

pendix section, I report an extension of these approaches discussed in Newell et al.

(2021) and discuss the assumptions that it relies on. In an attempt to deal with the

non-stationarity issue of trended temperatures and allow for the non-linear effect of

temperature changes, one could include higher-order polynomials of first-differenced

temperature as main regressors (as in Ortiz-Bobea et al. (2021)). Without loss of

generality, the estimating equation considering only a second-order polynomial of

differenced temperature is written as

∆yit = αi + δt + λ∆Tit + ψ∆[T 2
it] + εit (C.1)

which uses the growth rate of log-differences of real GDP per capita of country i

in year t as the dependent variable, the main regressors are the linear and quadratic

differenced temperature, where the latter term is the change in temperature-squared

(different from the squared change in temperature), ai is the country-specific fixed

effect and δt is the time-specific fixed effect. As in Kahn et al. (2021) and motivated

by historical evidence, I assume that

Tit = aTi
+ bTi

t+ νTi;t
(C.2)

where, in line with historical evidence, bTi
> 0, and E(νTi;t

) = 0 and E(ν2Ti;t
) = σ2

Ti
.

Substituting Equation (C.2) in Equation (C.1) and taking expectations yields

E(∆yit) = E(δt) + αi + bTi
[λ+ 2ψaTi

] + 2ψb2Ti
t (C.3)
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To ensure that E(∆yit) is not trended, there are some restrictions to impose. First,

since δt is unobserved, one can set E(δt) = 0 (Kahn et al., 2021), and then require

that 2ψb2Ti
t = 0 for all i. Therefore, this approach does not resolve the trend problem

around the output growth-climate specifications, introducing a trend in the mean

output growth, which is not supported empirically. An alternative approach would

be to include region-year rt fixed effects in Equation (C.1), such that it becomes

∆yirt = αir + δrt + λ∆Tirt + ψ∆[T 2
irt] + εirt (C.4)

with Tirt = aTi,r
+ bTi,r

t + νTi;rt
, where the shock νTi;rt

for country i in region r

in year t has zero mean and finite variance. Taking expectations as above, to have

that E(∆yirt) is stationary, one would require no trend in temperature bT i;r = 0, or

exact cancellation of quadratic trends in temperature at the regional level with the

region-year fixed effects, i.e. δrt + ψb
2

Trt = 0, for all r, where b
2

Tr =
1
n

∑nr

i=1 b
2
Ti,r

.
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D Sectoral interlinkages’ response to heat shocks

One of the main assumptions in the theoretical framework in Section 2 and the derived

empirical approach in Section 3.3 is that weather shocks affect economic production

via spillovers in a pre-determined exogenous production network that does not adjust

in response to weather shocks. This assumption has been shown to hold empirically,

reflecting the non-responsiveness of sectoral interlinkages to tropical cyclones exposure

mostly due to the stickiness of production processes (Kunze, 2021). I empirically test

this assumption by exploiting the time-varying nature of the sectoral interlinkages

between 1970 and 2019. I estimate the following specification

weighticjkt = fi(Wct) + αic + µij + λjkt + εicjkt (D.1)

where the dependent variable weighticjkt ∈ {ω; ω̂;ω}, respectively the downstream,

upstream and average interlinkage between sector i in country c and sector j in coun-

try k in year t. The objective is to exploit inter-annual variation in weather conditions

in the origin sector-country ic to test for within bilateral sector ij changes in inter-

linkages across countries. Given the level of aggregation of the sectors, the major

concern on the endogenous adjustment of the production network regards the poten-

tial substitution of inputs across trade partners for a given sector. For this reason,

the specification accounts for sector-country ic, origin-destination sector ij, and des-

tination sector-country-year jkt fixed effects, where the latter accounts for changes in

weather conditions in the destination country. Figure A3 reports the sector-specific

coefficients associated with heat shocks on the three measures of sectoral interlinkages,

displaying a small and not statistically significant effect across sectors and suggesting

that the production network does not endogenously adapt to heat shocks.
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E Time-invariant production network

To test for robustness, I construct alternative weights for sectoral-interlinkages for

which weather shocks affect economic production via a pre-determined exogenous

production network. To do so, I retain the average of the first available five years of

input-output sectoral interlinkages (i.e., 1970-1974) such that the downstream weights

are constructed as

ωi,c,j,m =
inputjm→ic∑

lf∈Θic

inputic→lf

(E.1)

and upstream weights are constructed as

ω̂i,c,j,m =
inputic→jm∑

lf∈Θic

inputic→lf

(E.2)

From this, the construction of network shocks follows as detailed in Section 3.3.1.
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F Changes in temperature and precipitation dis-

tribution

To provide additional evidence on the heterogeneous sectoral response to weather

shocks, I consider first-differenced weather changes. First, I construct a binary mea-

sure of annual changes in temperature and precipitation distribution either larger or

smaller than the previous year. Then, I consider how much daily temperatures and

precipitation are larger/smaller than the previous year. Table A5 shows summary

statistics for the measures of temperature and precipitation.

Figure A4 displays the 12 estimated coefficients from the same pooled regression

using a binary measure of weather shock indicating whether first-differenced annual

changes in daily average temperature and total precipitation are positive or negative.

Consistent with prior literature (e.g., Acevedo et al. (2020)), I uncover substantial

heterogeneity across sectors in the multicountry sample. The agricultural sector re-

sponds the most to both temperature and precipitation fluctuations. In particular,

if the daily average temperature is larger than in the previous year, the agricultural

GVA growth rate decreases by 0.7 percentage points (point estimates are reported in

Table A6), which translates into a 284% decrease with respect to the sample average

(0.002). The effect is large but comparable to previous estimates on the effect of heat

waves and tropical cyclones on agricultural growth rates (Miller et al., 2021; Kunze,

2021). In contrast, agriculture benefits from more precipitation, as documented in

prior literature (Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009). The

only other sector that responds elastically to variations in annual temperature and

precipitation distribution is transport, storage and communication, which marginally

benefits from hotter (15% increase of sample mean) and drier (17% increase of sample

mean) conditions that, for instance, facilitate transportation and storage and service

communication.

I further investigate the effect of changes in the average daily temperature and

precipitation distribution with the variables standardized to facilitate comparison.

Figure A5 shows the estimated coefficients (see Table A7 for tabular results). As
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previously documented, agriculture reacts negatively to hot temperature shocks but

benefits from more precipitation. In particular, a 0.01◦C daily increase with respect to

the previous year’s temperature (around 30% of the sample mean) is associated with

a decrease in the agricultural per capita growth rate by 3% of the sample mean. Sur-

prisingly, all the other sectors respond positively to increases in the average daily tem-

peratures, although a few sectors’ responses are estimated with less precision (other

activities; transport, storage and communication; wholesale, retail trade, restaurants

and hotels). In contrast, production in other sectors does not respond to changes in

precipitation, except for the transportation sector which benefits from drier condi-

tions.

74



G Quantifying the cost of the propagation of re-

cent warming

To understand the differential cost of propagation of recent warming, I use the esti-

mates of the effect of own, domestic, and foreign heat and cold shocks to simulate

how much slower or faster each sector would have grown annually over the 2001-2020

period, compared to a scenario under which daily temperature evolves linearly based

on its historical trend of 1970-2000. To do so, I estimate country-specific regressions

of the type Tdmct = αc+λdm+βct+εdmct on the 1970-2000 sample, where Tdmct is the

average temperature in day d in month m in year t in country c. I obtain country-

specific historical trends in daily temperature exploiting within day-month variation

between 1970 and 2000 and use β̂c to construct a counterfactual daily temperature

T̃dmct between 2001 and 2020 that is then used to compute the counterfactual num-

ber of cold and hot days. I assume that the trend is linear and that such a trend

does not affect the volatility of temperature shocks, which most likely results in an

underestimation of the adverse effects of abnormal temperatures.

I then average these effects over the 2001-2020 period to obtain a sector-specific

relative measure of estimated losses in value added. I finally compare the estimated

losses in value added omitting and accounting for the transmission of shocks across

countries through trade interlinkages. This computation does not necessarily repre-

sent the differential impact of recent anthropogenic warming accounting for network

shocks and is instead agnostic to the cause of recent warming (Burke and Tanutama,

2019).

First, I compute the annual cost/benefit of annual warming in 2001-2020 compared

to a counterfactual temperature which evolves linearly from the estimated trend over

the period 1970-2000, and distinguish between omitting and accounting for weather

shocks in trade partners:

gdirectict = γ̂95i (T 95
ict − T̃ 95

ict) + γ̂5i (T
5
ict − T̃ 5

ict) (G.1)
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gspilloverict = (γ̂95i T
95
ict + γ̂D,95

i T 95,D
ict + γ̂F,95i T 95,F

ict + γ̂5i T
5
ict + γ̂D,5

i T 5,D
ict + γ̂F,5i T 5,F

ict )

− (γ̂95i T̃
95
ict + γ̂D,95

i T̃ 95,D
ict + γ̂F,95i T̃ 95,F

ict + γ̂5i T̃
5
ict + γ̂D,5

i T̃ 5,D
ict + γ̂F,5i T̃ 5,F

ict )
(G.2)

where T 95
ict is the observed number of days above 95th percentile in sector i in

country c in year t, T̃ 95
ict is the counterfactual predicted number had the 1970-2000

average evolved linearly, T 95,J
ict is the weighted average number of days above 95th

percentile in trade partners J (where J ∈ {Foreign, Domestic}) from the perspective

of sector i in country c in year t. γ̂95i ’s are the sector-specific estimates for the effect

of own, domestic and foreign heat shocks on the sectoral growth rate (symmetrically

for γ̂5i ) obtained from bootstrapping 1000 times the underlying panel estimates from

Equation (12) where indirect shocks are constructed with a time-varying produc-

tion network that uses the first five-year average input-output interlinkages for each

decade. I compute sector i’s counterfactual value added levels in year t omitting and

accounting for indirect shocks

Ŷ p
ict = Yict−1 + yict + gpict (G.3)

where hatted term indicates a counterfactual, Y is the (log) GVA per capita, y is

the observed growth rate and p ∈ {direct, spillover}. I can then compute the average

relative loss in GVA for sector i in country c over the 2001-2020 period as

%LOSS
p

ic =
1

T

2020∑
t=2001

eŶ
p
ict − eYict

eYict
(G.4)

to obtain a measure of the average cost of recent warming at the sector level

omitting and accounting for the propagation of heat shocks (reported in Figure A21).

The aggregated average loss in GVA across sectors for country c is

%LOSS
p

c =
∑
s

%λicLOSS
p

ic (G.5)

where λic is the baseline five-year average share of total GVA of sector i in country c

between 1996 and 2000. The country-level losses omitting and accounting for indirect

heat shocks are reported in Figure 6.
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